Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 111 (1989), S. 5155-5165 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 113 (1991), S. 1553-1557 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 42 (1994), S. 2099-2107 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 85 (1986), S. 1848-1853 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The flow of energy from highly excited CH overtones in benzene is investigated by quasiclassical trajectory methods for atomic motions restricted to the molecular plane. Various initial conditions and potential-energy surfaces (harmonic and anharmonic) are examined. The results are in accord with the rapid energy transfer rates observed in experiments. Comparisons are made with other theoretical studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 86 (1987), S. 4411-4417 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Energy flow from CH overtones in benzene has been examined using quasiclassical trajectory calculations. The potential energy surfaces for this study are of the form reported by Pulay, Fogarasi, and Boggs [J. Chem. Phys. 74, 3999 (1981)]. The effect of out-of-plane motion on energy transfer in benzene was examined by comparing results for planar and nonplanar models. The methods of analysis include the calculation of the energy in each of the CH bonds and the energy in each of the planar normal modes as a function of time. It is shown that there are two distinct sets of normal modes: low frequency modes which do not significantly participate in energy redistribution and higher frequency modes which appear to be strongly coupled to the excited CH bond. Within the participating set of modes, those which appear to possess the most CCH bend character are the most instrumental in absorbing energy from the excited CH bond. This study shows that rapid energy transfer out of an excited CH stretch mode can occur for a purely harmonic potential-energy surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 959-973 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The interaction between a winter flounder antifreeze polypeptide and an ice/water interface was studied using Molecular Dynamics computer simulation techniques to study the mechanism of action of this class of antifreeze molecules. Simple Point Charge models were used for the water molecules, and a molecular mechanics program (CHARMM) was used to construct the model for the polypeptide. A (2021) face was exposed on the ice surface, as this is believed to be the experimentally favored ice face for peptide binding. The polypeptide binds strongly to the ice surface even though it was placed with its four polar threonine (Thr) groups pointing away from the ice surface. This tested the previously advanced hypothesis that adsorption occurs primarily between these groups and the ice due to a matching of the spacing between oxygen atoms in the ice lattice and the polar Thr residues. As well as contacts with other polar groups on the peptide, the binding to the ice produces a good steric fit of the peptide with the corrugated ice interface. The presence of the peptide did not induce any melting of the ice at 200 K.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 33 (1993), S. 1481-1503 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A winter flounder antifreeze polypeptide (HPLC-6) has been studied in vacuo and in aqueous solution using molecular dynamics computer simulation techniques. The helical conformation of this polypeptide was found to be stable both in vacuum and in solution. The major stabilizing interactions were found to be the main-chain hydrogen bonds, a salt-bridge interaction, and solute-solvent hydrogen bonds. A significant bending in the middle of the polypeptide chain was observed both in vacuo and in solvent at 300 K. Possible causes of the bending are discussed. From simulations of mutant polypeptide molecules in vacuo, it is concluded that the bend in the native polypeptide was caused by side chain to backbone hydrogen bond competition involving the Thr 24 side chain and facilitated by strains on the helix resulting from the Lys 18-Glu 22 salt bridge. © 1993 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...