Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key words Auxostat ; Batch culture ; Chemostat ; Continuous culture ; Fermentation control ; Inhibition ; kinetics ; Nutristat ; On-line measurement ; Pentachlorophenol ; Pollutant ; Sphingomonas ; Steady-state conditions ; Toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A bacterium degrading pentachlorophenol (PCP) as the only source of carbon and energy was grown in a “nutristat”, i.e., a continuous culture with on-line measurement and control of the substrate concentration. We improved the PCP nutristat by incorporation of a personal computer with a proportional integral derivative (PID) algorithm for controlling the medium feed pump. The controlled value deviated from the average (set-point) value by 1% maximally. In the PCP nutristat (30°C), the steady-state dilution rate, and hence, specific growth rate, showed a maximum value of 0.142 ± 0.004 h–1 at set-point PCP concentrations between 37 and 168 μM. At PCP concentrations above 168 μM, the steady-state growth rate decreased because of inhibition. The growth yield coefficient was not seriously affected by the PCP concentration, suggesting that uncoupling was not the inhibitory mechanism. It was concluded that the PCP nutristat is very useful for establishing steady-state conditions that maintain growth-inhibitory PCP concentrations and high cell concentrations, conditions for which the chemostat is not suitable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Auxostat ; Batch culture ; Chemostat ; Continuous culture ; Fermentation control ; Inhibition kinetics ; Nutristat ; On-line measurement ; Pentachlorophenol ; Pollutant ; Sphingomonas ; Steady-state conditions ; Toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A bacterium degrading pentachlorophenol (PCP) as the only source of carbon and energy was grown in a “nutristat”, i.e., a continuous culture with on-line measurement and control of the substrate concentration. We improved the PCP nutristat by incorporation of a personal computer with a proportional integral derivative (PID) algorithm for controlling the medium feed pump. The controlled value deviated from the average (set-point) value by 1% maximally. In the PCP nutristat (30°C), the steadystate dilution rate, and hence, specific growth rate, showed a maximum value of 0.142±0.004 h-1 at set-point PCP concentrations between 37 and 168 μM. At PCP concentrations above 168 μM, the steady-state growth rate decreased because of inhibition. The growth yield coefficient was not seriously affected by the PCP concentration, suggesting that uncoupling was not the inhibitory mechanism. It was concluded that the PCP nutristat is very useful for establishing steady-state conditions that maintain growth-inhibitory PCP concentrations and high cell concentrations, conditions for which the chemostat is not suitable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 145-154 
    ISSN: 0006-3592
    Keywords: bioavailability ; PAH ; biodegradation ; dissolution ; hydrodynamic ; mixing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of hydrodynamic conditions on the dissolution rate of crystalline naphthalene as a model polycyclic aromatic hydrocarbon (PAH) was studied in stirred batch reactors with varying impeller speeds. Mass transfer from naphthalene melts of different surface areas to the aqueous phase was measured and results were modeled according to the film theory. Results were generalized using dimensionless numbers (Reynolds, Schmidt, and Sherwood). In combined mass transfer and biodegradation experiments, the effect of hydrodynamic conditions on the degradation rate of naphthalene by Pseudomonas 8909N was studied. Experimental results were mathematically described using mass-transfer and microbiological models. The experiments allowed determination of mass-transfer and microbiological parameters separately in a single run. The biomass formation rate under mass transfer limited conditions, which is related to the naphthalene biodegradation rate, was correlated to the dimensionless Reynolds number, indicating increased bioavailability at increased mixing in the reactor liquid. The methodology presented in which mass transfer processes are quantified under sterile conditions followed by a biodegradation experiment can also be adapted to more complex and realistic systems, such as particulate, suspended PAH solids or soils with intrapartically sorbed contaminants when the appropriate mass-transfer equations are incorporated. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 145-154, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 397-407 
    ISSN: 0006-3592
    Keywords: nonionic surfactants ; mass transfer ; bioavailability ; PAH ; biodegradation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of six nonionic surfactants, Igepal CA-720, Tergitol NPX, Triton X-100, PLE4, PLE10, and PLE23, on the dissolution rate of solid naphthalene was studied in stirred batch reactors. Results showed increased mass-transfer rates with increased surfactant concentrations up to 10 kg m-3. Dissolution experiments were adequatly described by a mechanistic mass-transfer model. Partitioning of naphthalene into the micelles and the diffusion coefficients of the micelles affected the dissolution rate most significantly. Combined dissolution and biodegradation experiments with Triton X-100 or PLE10 with naphthalene showed that the biomass-formation rate of Pseudomonas 8909N (DSM No. 11634) increased concomitantly with the mass-transfer rate under naphthalene-dissolution limited conditions up to surfactant concentrations of 6 kg m-3. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 397-407, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...