Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 19 (2000), S. 1108-1114 
    ISSN: 1432-203X
    Keywords: Key words Almond ; cDNA cloning ; Prunus dulcis Sequence comparison ; S-like RNase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Many flowering plants contain stylar S-RNases that are involved in self-incompatibility and S-like RNases of which the biological function is uncertain. This paper reports the deduced amino acid sequence of an S-like RNase gene (PD1) from the self-incompatible plant Prunus dulcis (almond). The amino acid sequence of PD1, which was derived from cDNA and genomic DNA clones, showed 34–86% identity to acidic plant S-like RNases reported so far, with the highest degree of similarity being to an S-like RNase from Japanese pear (Pyrus pyrifolia). Based on RNA hybridisation experiments it appears that, like for many other S-like RNases, the expression of PD1 is not pistil-specific. Analysis of the genomic structure revealed the presence of three introns, of which one is similar in location to that of the related S-RNase gene from Solanaceae and Rosaceae. At least four bands hybridising to PD1 were found upon Southern hybridisation, suggesting the presence of a multigene family of S-like RNase genes in almond. The putative biological function of PD1 is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 691-698 
    ISSN: 1432-2242
    Keywords: Malus x domestica ; Apple ; Self-incompatibility ; S-alleles ; PCR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract cDNA sequences corresponding to two self-incompatibility alleles (S-alleles) of the apple cv ‘Golden Delicious’ have previously been described, and now we report the identification of three additional S-allele cDNAs of apple, one of which was isolated from a pistil cDNA library of cv ‘Idared’ and two of which were obtained by reverse transcription-PCR (RT-PCR) on pistil RNA of cv ‘Queen's Cox’. A comparison of the deduced amino acid sequences of these five S-allele cDNAs revealed an average homology of 69%. Based on the nucleotide sequences of these S-allele cDNAs, we developed a molecular technique for the diagnostic identification of the five different S-alleles in apple cultivars. The method used consists of allele-specific PCR amplification of genomic DNA followed by digestion of the amplification product with an allele-specific restriction endonuclease. Analysis of a number of apple cultivars with known S-phenotype consistently showed coincidence of phenotypic and direct molecular data of the S-allele constitution of the cultivars. It is concluded that the S-allele identification approach reported here provides a rapid and useful method to determine the S-genotype of apple cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words S-allele-specific PCR ; Haploid induction ; Homozygocity ; Malus domestica ; Self-incompatibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  To obtain homozygous genotypes of apple, we have induced haploid development of either the female or the male gametes by parthenogenesis in situ and anther culture, respectively. Of the shoots obtained, which were mainly of a non-haploid nature, some could be derived from fertilised egg cells or from sporophytic anther tissue. In order to select the shoots having a true haploid origin, and thus homozygotes, we decided to use the single multi-allelic self-incompatibility gene as a molecular marker to discriminate homozygous from heterozygous individuals. The rationale behind this approach was that diploid apple cultivars contain 2 different alleles of the S-gene and therefore the haploid induced shoots obtained from them should have only one of the alleles of the single parent. The parental cultivars used were ‘Idared’ (parthenogenesis in situ) and ‘Braeburn’ (androgenesis), and their S-genotypes were known, except for 1 of the ‘Braeburn’S-alleles. To stimulate parthenogenetic development ‘Idared’ styles were pollinated with irradiated ‘Baskatong’ pollen, the S-alleles of the latter (2n) cultivar were also unknown. The cloning and sequence analysis of these 3 unidentified S-alleles, 1 from ‘Braeburn’ and 2 from ‘Baskatong’ is described, and we show that they correspond to the S 24 -, S 26 - and S 27 -alleles. We have optimised a method for analysis of the S-alleles of ‘Idared/Baskatong’- or ‘Braeburn’-derived in vitro plant tissues and have shown that this approach can be applied for the screening of the in vitro shoots for their haploid origin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2145
    Keywords: Glycan chains ; Petunia hybrida ; Ribonuclease (RNase) ; Self-incompatibility ; S-(glyco)protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Self-incompatibility in flowering plants is controlled by the S-gene, encoding stylar S (allele-specific) glycoproteins. In addition to three previously characterized Petunia hybrida S-proteins, we identified by N-terminal sequence analysis another stylar S-protein, co-segregating with the S b-allele. Purified S-proteins reveal biological activity, as is demonstrated for two of them by the allele-specific inhibition of pollen tube growth in vitro. Moreover, the four isolated S-proteins are ribonucleases (S-RNases). Specific activities vary from 30 (S1) to 1000 (S2) units per min per mg protein. We attempted to investigate the functionality of the carbohydrate portion of the S-RNases. Deglycosylation studies with the enzyme peptide-N-glycosidase F (PNGase F) reveals differences in the number of N-linked glycan chains present on the four S-RNases. Variability in the extent of glycosylation accounts for most of the molecular weight differences observed among these proteins. By amino acid sequencing, the positions of two of the three N-glycosylation sites on the S2-RNase could be located near the N-terminus. Enzymic removal of the glycan side chains has no effect on the RNase activity of native S-RNases. This suggests another role of the glycan moiety in the self-incompatibility mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2145
    Keywords: Key words Confocal ; Gametophytic self-incompatibility ; Immuno-histochemistry ; Malus domestica ; S-RNases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The molecular bases of self-incompatibility have been intensively studied in a restricted number of model species, but for most families the expression and distribution of S-proteins is unknown. In this work, pistil cryosections from apple were used for in situ detection of S-proteins. Two specific antibodies, one against the S3-protein and another against all apple S-proteins were used. S-proteins were shown to be localised in the intercellular space of the transmitting tissue, both in the stigma and style, which agrees with the proposed mechanism of action for S-RNases in gametophytic self-incompatibility. Some intracellular labelling was also observed in all ovary sections, confined to one layer of the nucellus surrounding the embryo sac, but this labelling was found to be non-S-allele-specific. Nevertheless, the signal in the ovary was tissue-specific, which may indicate that some component not encoded by the S-locus but similar to S-proteins was detected. To the best of our knowledge this is the first report on the precise distribution of S-RNases in a rosaceous species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...