Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 63 (1993), S. 2059-2061 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The volume associated with the relaxation of the second order nonlinear optical susceptibility in a guest-host polymer was determined by measuring the change in the rate of decay of the second harmonic signal from poled films as a function of hydrostatic pressure. The logarithm of the decay rates determined from Kohlrausch–Williams–Watt fits was found to vary linearly with pressure from 1–2100 atm. Above 2100 atm a saturation effect was observed. An activation volume of 86±2 cm3/mole, nearly equal to the size of one monomer unit, was found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1013-1024 
    ISSN: 0887-6266
    Keywords: nonlinear optical polymer ; pressure ; chromophore reorientation ; poly(alkyl methacrylates) ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Activation volumes for chromophore reorientation were measured for a series of guest-host polymeric materials, indicating a significant coupling between chromophore motion and the glassy α and β relaxation dynamics of the polymer host. The specific systems studied were formed by individually dissolving N,N-dimethyl-p-nitroaniline (DpNA), 4-(dimethylamino)-4′-nitrotolane (DMANT), 4-(diethylamino)-4′-nitrotolane (DEANT), and 1-((4-(dimethylamino)phenyl)ethynyl)-4-((4-nitrophenyl)ethynyl)benzene (DMAPEANT) in poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), and poly(isobutyl methacrylate) (PiBMA). In each of these systems, the isothermal, sub-Tg decay of the second-order optical susceptibility χ(2) was monitored as a function of pressure using second harmonic generation. In each system, the observed decay of χ(2) was represented by a stretched exponential equation from which the decay time τ0 and decay distribution width βKWW were determined. For each dopant molecule, the decrease in activation volume with the increasing size of the polymer host's alkyl side group and the pressure dependence of βKWW were indicative of partial coupling between chromophore rotation and the glassy β relaxation dynamics of the polymer host. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1013-1024, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 901-911 
    ISSN: 0887-6266
    Keywords: activation volume ; relaxation ; pressure ; polymer ; reorientation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of 4-(diethylamino)-4′-nitrotolane (DEANT) in poly(methyl methacrylate) (PMMA). The decay of the SHG signal from films of DEANT/PMMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature to 35°C above it. The activation volume, ΔV*αβ associated with the long range α-type motion of the polymer remained constant at 213 ± 10 Å3 between Tg - 25°C and Tg + 10°C. At higher temperatures, ΔV*αβ decreased linearly with increasing temperature. The activation volume, ΔV*αβ, associated with short range secondary relaxations was constant over the entire temperature range with a value of 77 ± 10 Å3. The data suggest that above Tg chromophore reorientation is coupled to both the long range and local motions of the polymer; whereas, well below Tg chromophore reorientation is closely coupled to the local relaxations of the polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 901-911, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 2391-2404 
    ISSN: 0887-6266
    Keywords: activation volume ; relaxation ; susceptibility ; pressure ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The decay of the second-order optical susceptibility χ(2) as a function of temperature and pressure has been studied in a variety of corona poled guest-host and side-chain polymeric materials using second harmonic generation (SHG). The specific systems studied include the side-chain copolymer poly(disperse red 1 methacrylate-co-methyl methacrylate) (DR1-MMA) as well as the series of guest-host materials formed by individually dissolving the dyes Disperse Red 1 (DR1), Disperse Orange 3 (DO3), and N,N dimethyl-p-nitroaniline (DpNA) in poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polystyrene (PS). In each of these systems, the observed relaxation of χ(2) can be represented by a Kohlrausch-Williams-Watts stretched exponential, from which the decay time τ and decay distribution width β are determined. For pressures up to approximately 1000 atm, the natural log of the pressure shift factor is seen to vary linearly with applied pressure, yielding the activation volume for rotational reorientation of the chromophores in each system. The activation volumes are loosely correlated with dopant size in a given polymer host, but are not the same for a given dopant in different hosts. Modeling the chromophores as rotating cylinders, we show that the measured activation volumes do not correspond to the average volume swept out by the dye molecules as they reorient. On the other hand, the activation volumes for each of the three dyes dissolved in PS are seen to be in agreement with the measured activation volumes for the molecular motions associated with volume recovery in neat PS. Moreover, the activation volumes for DR1 and DpNA dissolved in PS are seen to correlate with the proposed couplings between the rotational reorientation of DR1 and the α-relaxation dynamics of PS and the slight decoupling of DpNA from the α-transition motion of PS. This correlation suggests a possible relationship between the activation volumes for chromophore reorientation and the size of the components of the host polymer or the volume swept through by the polymer components during structural reconfiguration. We demonstrate that assuming activation volumes for chromophore reorientation to be related to the size or motion of the polymer host constituents yields a consistent interpretation of the observed trends in the measured activation volumes. © 1995 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...