Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 395-418 
    ISSN: 0271-2091
    Keywords: compressible liquid ; Riemann solvers ; approximate Riemann solvers ; Tammann equation of state ; Tait equation of state ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A number of Riemann solvers are proposed for the solution of the Riemann problem in a compressible liquid. Both the Tait and Tammann equations of state are used to describe the liquid. Along with exact Riemann solvers, a detailed description of a primitive variable Riemann solver, a two-shock Riemann solver, a two-rarefaction Riemann solver and an extension to the HLL Riemann solver, namely the HLLC Riemann solver, are presented. It is shown how these Riemann solvers may be implemented into Godunov-type numerical methods. The appropriateness of each of the Riemann solvers for a number of flow situations is demonstrated by applying Godunov's method to some revealing shock tube test problems. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 1241-1261 
    ISSN: 0271-2091
    Keywords: shallow water equations ; finite volume ; open channel ; hydraulic jump ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A high-resolution finite volume hydrodynamic solver is presented for open-channel flows based on the 2D shallow water equations. This Godunov-type upwind scheme uses an efficient Harten-Lax-van Leer (HLL) approximate Riemann solver capable of capturing bore waves and simulating supercritical flows. Second-order accuracy is achieved by means of MUSCL reconstruction in conjunction with a Hancock two-stage scheme for the time integration. By using a finite volume approach, the computational grid can be irregular which allows for easy boundary fitting. The method can be applied directly to model 1D flows in an open channel with a rectangular cross-section without the need to modify the scheme. Such a modification is normally required for solving the 1D St Venant equations to take account of the variation of channel width. The numerical scheme and results of three test problems are presented in this paper. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 1821-1838 
    ISSN: 0029-5981
    Keywords: convection schemes ; unstructured grids ; positivity preservation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Despite their geometric flexibility, unstructured mesh schemes for compressible gas dynamics do not usually resolve captured shocks and contact discontinuities as well as corresponding structured mesh schemes. The main reason for this appears to be the difficulty in constructing analogous extensions to higher-order accuracy. This issue is addressed in some detail and a new, compact stencil, Maximum Limited Gradient (MLG) reconstruction technique is presented for unstructured elements. The MLG reconstruction turns out to be a multidimensional analogue of the one-dimensional Superbee slope. We then describe a simple and robust extension to systems of equations, which does not require any diagonalization of flux Jacobian matrices. An application to a blast wave hazard prediction problem is presented using the wave-by-wave extension of the MLG limiter to the Euler equations.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...