Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Solar physics, astrophysics, and astronomy (energetic particles; flares and mass ejections) ; Space plasma physics (transport processes)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Three main physical processes (and associated properties) are currently used to describe the flux and anisotropy time profiles of solar energetic particle events, called SEP profiles. They are (1) the particle scattering (due to magnetic waves), (2) the particle focusing (due to the decrease of the amplitude of the interplanetary magnetic field (IMF) with the radial distance to the Sun) and (3) the finite injection profile at the source. If their features change from one field line to another, i.e. if there is a cross IMF gradient (CFG), then the shape of the SEP profiles will depend, at onset time, on the relative position of the spacecraft to the IMF and might vary significantly on small distance scale (e.g. 106 km). One type of CFG is studied here. It is called intensity CFG and considers variations, at the solar surface, only of the intensity of the event. It is shown here that drops of about two orders of magnitude over distances of ∼104 km at the Sun (1° of angular distance) can influence dramatically the SEP profiles at 1 AU. This CFG can lead to either an under or overestimation of both the parallel mean free path and of the injection parameters by factor up to, at least, ∼2/3 and 18, respectively. Multi-spacecraft analysis can be used to identify CFG. Three basic requirements are proposed to identify, from the observation, the type of the CFG being measured.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 79 (1997), S. 487-525 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Joint Science Operations Centre (JSOC) has been established to provide the operational interface between the Instrument Principal Investigators (PIs) and the European Space Operations Centre (ESOC). Its key task will be to merge inputs from the Cluster instrument teams and to generate the coordinated command schedule for operation of the scientific payload. In addition, it will collect and process data needed to plan those operations and will monitor the performance of the mission and individual instruments. This paper outlines the JSOC subsystems that have been built to carry out these tasks and highlights points of scientific or technical interest within these systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...