Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 18 (1986), S. 505-512 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constants of O2(1Δg) with aliphatic alcohols, terpenes, unsaturated hydrocarbons, chlorinated hydrocarbons, oxygen, and diamines have been studied in thepresence of NO2. The rate constants for oxygen, 1,2-ethane diamine, and 1,2-propane diamine are (9.9 ± 0.4) × 102, (8.7 ± 0.7) × 104, and (1.4 ± 0.3) × 104 1/mol/s, respectively. The rate constants for all other compounds are less than the oxygen rate constant.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 205-211 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constants for the quenching of O2(1Δg) with carbon disulfide, dimethyl sulfide, dimethyl disulfide, diallyl disulfide, ethyl mercaptan, and thiophene have been determined in a discharge flow system in the absence of oxygen atoms. The rate constants are found to be (6.5 ± 0.6) × 104, (1.8 ± 0.2) × 104, and (3.5 ± 0.6) × 103 L/mol · s for dimethyl sulfide, ethyl mercaptan, and thiophene, respectively. The other compounds have rate constants 〈9.9 × 102 L/mol · s. In the case of dimethyl sulfide, even when NO2 concentration is more than what is required to remove oxygen atoms completely, the rate constants are found to vary with different amounts of NO2. No correlation is found to exist between the logarithm of the rate constants and the ionization potentials of the compounds.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 17 (1985), S. 1315-1320 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The quenching rate constants of O2(1Δg) with n-butylamine, diethylamine, dipropylamine, dibutylamine, and tripropylamine have been determined in a discharge flow system. The rate constants are found to be (1.6 ± 0.2) × 103, (8.5 ± 0.6) × 104, (9.8 ± 0.5) × 104, (2.1 ± 0.1) × 105, and (8.6 ± 0.5) × 105 1 mol-1 s-1, respectively. The rate constants are found to increase in the order, tertiary amine → secondary amine → primary amine. The “inductive effect” of alkyl substitution is also found to increase the rate constant in a given series of amines.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 175-185 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Relaxation rates for O2(1Σg+) by nonradiative pathways have been determined using the fast-flow technique. O2(1Σg+) is formed from O2(1Δg) by an energy pooling process. O2(1Δg) is generated by passing purified oxygen through a microwave discharge. Oxygen atoms are removed by distilling mercury vapor through the discharge zone. It has been observed that the wall loss rate for O2(1Σg+) decreases with increasing pressure of oxygen and thus appears to be diffusion controlled. Quenching rate constants for O2, N2, and He have been determined and found to be (1.5 ± 0.1) × 104, (1.0 ± 0.05) × 106 and (1.2 ± 0.1) × 105 l./mol·sec, respectively.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...