Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 721 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 782 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 374-379 
    ISSN: 0006-3592
    Keywords: reversed micelles ; ribonuclease A ; activity ; recovery ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have investigated the effect of two simple sugars, glucose and sucrose, on the extraction of ribonuclease A by AOT-isooctane reversed micelles. Including the sugars at concentrations up to 0.75 M in the feed solution resulted in moderate improvements in the forward transfer efficiency. The greatest effects were seen observed in the backward transfer step where both the protein recovery yield and the activity of the protein were greatly increased. Protein transfer and activity yields were also dependent on the AOT concentration. We suggest that the presence of sucrose, which was solubilized into the reversed micelles, results in preferential hydration of ribonuclease A, reducing the protein-surfactant interactions. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:374-379, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 16-23 
    ISSN: 0006-3592
    Keywords: protein refolding ; size-exclusion chromatography ; SEPROS ; lysozyme ; bovine carbonic anhydrase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new method to improve refolding yields and to increase the concentration of refolded proteins in a single operation has been developed. The method uses size-exclusion chromatography matrices to perform buffer exchange, aggregate removal, and the folding reaction. The reduced diffusion of proteins in gel-filtration media has been shown to suppress the nonspecific interactions of partially folded molecules, thus reducing aggregation. Hen egg white lysozyme (HEWL) and bovine carbonic anhydrase (CAB) were successfully refolded from initial protein concentrations of up to 80 mg/mL using Sephacryl S-100 (HR). The aggregation reaction for lysozyme was reduced and was only detected at the highest protein concentration used. The average recovery of lysozyme was 63%, with an average specific activity of 104%. Carbonic anhydrase experiments also showed that aggregation was suppressed and the average protein recovery from the column was 56%, with a specific activity of 81%. This process enables refolding and the purification of active species to be achieved in a single step. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 9 (1997), S. 261-267 
    ISSN: 0899-0042
    Keywords: industrial scale ; phenylalanine ; enhancing enantioselectivity ; membrane solvent ; chiral extraction ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We describe the use of emulsion liquid membrane technology to perform chiral separations on low molecular weight species. We have reviewed liquid membrane technology in the context of existing process scale chiral separations. We illustrate the potential of this new technique by presenting our results on the selective extraction of phenylalanine enantiomers, using copper (II) N-decyl-(L)-hydroxyproline as a chiral selector in an emulsion liquid membrane configuration. This is compared with an analogous batch solvent extraction system. Initial batch enantiomeric excesses of greater than 40% were observed with the emulsion liquid membrane system compared with around 25% for the solvent extraction system. It was also noted that the system is not limited by the equilibrium capacity constraints of the solvent extraction system. We have shown that kinetic chiral liquid membrane technology offers high productivity and flexibility compared with analogous process scale chiral technologies. Recent transfer of highly specific chiral reversed-phase high-performance liquid chromatographic chemistries have shown that “one-stop” enantiomeric excesses of commercial interest (〉95%) are achievable using kinetic chiral liquid membrane systems. Solvent and temperature selection strategies also have been outlined as means of increasing the enantioselectivity of existing liquid membrane extraction chemistries. Chirality 9:261-267, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...