Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Dodecaheme cytochrome c has been purified from Desulfovibrio (D.) desulfuricans ATCC 27774 cells grown under both nitrate and sulfate-respiring conditions. Therefore, it is likely to play a role in the electron-transfer system of both respiratory chains. Its molecular mass (37768 kDa) was determined by electrospray mass spectrometry. Its first 39 amino acids were sequenced and a motif was found between amino acids 32 and 37 that seems to exist in all the cytochromes of the c3 type from sulfate-reducing bacteria sequenced at present. The midpoint redox potentials of this cytochrome were estimated to be −68, −120, −248 and −310 mV. Electron paramagnetic resonance spectroscopy of the oxidized cytochrome shows several low-spin components with a gmax spreading from 3.254 to 2.983. Two crystalline forms were obtained by vapour diffusion from a solution containing 2% PEG 6000 and 0.25–0.75 M acetate buffer pH = 5.5. Both crystals belong to monoclinic space groups: one is P21, with a = 61.00, b = 106.19, c = 82.05 Å, β = 103.61°, and the other is C2 with a = 152.17, b = 98.45, c = 89.24 Å, β = 119.18°. Density measurements of the P21 crystals suggest that there are two independent molecules in the asymmetric unit. Self-rotation function calculations indicate, in both crystal forms, the presence of a non-crystallographic axis perpendicular to the crystallographic twofold axis. This result and the calculated values for the volume per unit molecular weight of the C2 crystals suggest the presence of two or four molecules in the asymmetric unit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Dimeric dihaem cytochrome ; Stacked haem arrangement ; MAD phasing ; X-ray structure ; Novel fold
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The "split-Soret" cytochrome (SSC) was isolated from the sulfate- and nitrate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 and has no significant nitrate or nitrite reductase activity. The protein received its name due its unusual spectral properties. It is a dimer containing two identical subunits of 26.3 kDa, each with two haem-c groups. A preliminary model for the three-dimensional structure of this cytochrome was derived using the Multiple Wavelength Anomalous Dispersion (MAD) phasing method. This model shows that SSC is indeed a dimer containing four haems at one end of the molecule. In each monomer the two haems have their edges overlapped within van der Waals contacts with an iron-to-iron distance of 9 Å. The polypeptide chain of each monomer supplies the sixth axial ligand to the haems of the other monomer. This work shows that SSC constitutes a new class of cytochrome. The stacking of the two haems in the monomer within van der Waals distances of each other, and also the short (van der Waals) distances between the two monomers in the dimeric molecule are unprecedented in hemoproteins. This particular haem arrangement is an excellent model for the spectral study (undertaken several years ago) of haem-haem interaction using the aggregated haem undecapeptide derived from mammalian cytochrome c.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...