Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 200 (1999), S. 521-531 
    ISSN: 1432-0568
    Keywords: Key words Development ; Internal capsule ; Nucleus basalis ; Rat ; Thalamus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  This study defines several features of the early connections of the developmentally transient perireticular thalamic nucleus of rats. The neocortex of developing rats was injected with either DiI, biotinylated dextran, WGA-HRP (wheatgerm agglutinin conjugated-horseradish peroxidase), fluorescent latex beads or cholera toxin subunit B (CTB) and their brains were processed for tracer detection with standard methods. In general, tracer injections into various regions of the developing neocortex revealed no labelled neurones within the perireticular nucleus, although some of these tracers (WGA-HRP, dextran) labelled many of the amoeboid microglial cells that are found within this nucleus. There were, however, many retrogradely labelled neurones in a region adjacent to the perireticular nucleus, within the nucleus basalis of the basal forebrain (medial edge of globus pallidus). Their identity was confirmed as neurones of the nucleus basalis since they were all were similar in morphology and somal size to neurones that were immunoreactive to NGFr (nerve growth factor receptor), an antigen found only among neurones of the nucleus basalis and basal forebrain. Moreover, double labelling experiments revealed that most, if not all, of the cortically labelled neurones were NGFr-immunoreactive also. Thus, in conclusion, our results suggest that the perireticular nucleus does not project to the neocortex; the only neurones in the general vicinity of the perireticular nucleus that have a cortical projection form part of the nucleus basalis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 8 (1996), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The visual sector of the reticular thalamic nucleus has come under some intense scrutiny over recent years, principally because of the key role that the nucleus plays in the processing of visual information. Despite this scrutiny, we know very little of how the connections between the reticular nucleus and the different areas of visual cortex and the different visual dorsal thalamic nuclei are organized. This study examines the patterns of reticular connections with the visual cortex and the dorsal thalamus in the rat, a species where the visual pathways have been well documented. Biotinylated dextran, an anterograde and retrograde tracer, was injected into different visual cortical areas [17; rostral 18a: presumed area AL (anterolateral); caudal 18a: presumed area LM (lateromedial); rostral 18b: presumed area AM (anteromedial); caudal 18b: presumed area PM (posteromedial)] and into the different visual dorsal thalamic nuclei (posterior thalamic, lateral posterior, lateral geniculate nuclei), and the patterns of anterograde and retrograde labelling in the reticular nucleus were examined. From the cortical injections, we find that the visual sector of the reticular nucleus is divided into subsectors that each receive an input from a distinct visual cortical area, with little or no overlap. Further, the resulting pattern of cortical terminations in the reticular nucleus reflects largely the patterns of termination in the dorsal thalamus. That is, each cortical area projects to a largely distinct subsector of the reticular nucleus, as it does to a largely distinct dorsal thalamic nucleus. As with each of the visual cortical areas, each of the visual dorsal thalamic (lateral geniculate, lateral posterior, posterior thalamic) nuclei relate to a separate territory of the reticular nucleus, with little or no overlap. Each of these dorsal thalamic territories within the reticular nucleus receives inputs from one or more of the visual cortical areas. For instance, the region of the reticular nucleus that is labelled after an injection into the lateral geniculate nucleus encompasses the reticular regions which receive afferents from cortical areas 17, rostral 18b and caudal 18b. These results suggest that individual cortical areas may influence the activity of different dorsal thalamic nuclei through their reticular connections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary During early development, the perireticular thalamic nucleus is very large (i.e. has many cells) and has a strong projection to the dorsal thalamus and to the cerebral neocortex. By adulthood, the nucleus has much reduced in size and only a few cells remain. It is not clear whether these perireticular cells that remain into adulthood maintain their connections with the dorsal thalamus and with the neocortex. This study examines this issue by injecting neuronal tracers into various nuclei of the dorsal thalamus (dorsal lateral geniculate nucleus, medial geniculate complex, ventroposteromedial nucleus, lateral posterior nucleus, posterior thalamic nucleus) and into different areas of the neocortex (somatosensory, visual, auditory). After injections of tracer into the individual nuclei of the rat and ferret dorsal thalamus, retrogradely-labelled perireticular cells are seen. In general, after each injection, the retrogradely-labelled perireticular cells lie immediately adjacent to a group of retrogradely-labelled reticular cells. For instance, after injections into the medial geniculate complex, perireticular cells adjacent to the auditory reticular sector are retrogradely-labelled, whilst after an injection into the dorsal lateral geniculate nucleus, retrogradely-labelled perireticular cells adjacent to the visual reticular sector are seen. By contrast, injections of tracer into various areas of the rat and ferret neocortex result in no retrogradely-labelled cells in the perireticular nucleus. Thus, unlike during perinatal development when perireticular cells project to both neocortex and dorsal thalamus, perireticular cells in the adult seem to project to the dorsal thalamus only: the perireticular projection to the neocortex appears to be entirely transient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...