Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 466 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the intact flagellum, dynein arms produce shearing forces that result in sliding between adjacent doublet microtubules. This sliding can be demonstrated directly by limited digestion of demembranated axonemes with a protease in the presence of MgATP2"; this causes the doublets to slide actively ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A complementary DNA encoding the D100 poly-peptide of rat brain dynamin—a force-producing, microtubule-activated nucleotide triphosphatase—has been cloned and sequenced. The predicted amino acid sequence includes a guanine nucleotide-binding domain that is homologous with those of a ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 14 (1989), S. 491-500 
    ISSN: 0886-1544
    Keywords: intracellular motility ; endocytosis ; cytoskeleton ; ATPase ; retrograde transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A microtubule associated protein from brain tissue (MAP 1C), has been found to possess many properties in common with ciliary and flagellar dyneins (Paschal et al.: J. Cell Biol. 105:1273-1282, 1987). However, this protein, now designated as cytoplasmic dynein, exhibited several properties which distinguish it from axonemal forms of the enzyme. We have investigated these characteristics further in a study of cytoplasmic dyneins from non-neuronal tissues. Rat liver and testis in particular were found to contain high levels of cytoplasmic dynein. The yield of dynein from testis was over 70 μg/g of tissue, making this the best source of cytoplasmic dynein of all tissues so far examined. The characterization of dynein from these sources has confirmed and extended our previous observations concerning the unique properties of cytoplasmic dynein. Activation of liver and testis dynein occured at low (〈1 mg/ml) tubulin concentration. Polypeptides identified as subunits of brain cytoplasmic dynein (74, 59, 57, 55, and 53 kDa) were present in liver and testis preparations. In addition, polypeptides at 150 and 45 kDa were found to copurify with the non-neuronal dyneins. The liver and testis enzyme hydrolyzed pyrimidine nucleotides at rates up to 12.5 times faster than ATP, though the relative affinity of cytoplasmic dynein for CTP was much lower (Km = 1.0 mM) than that for ATP. The properties of the testis enzyme were consistent with its identification as a cytoplasmic dynein rather than a sperm axonemal precursor. These data indicate that cytoplasmic dyneins may be widespread in distribution and that they share certain biochemical properties unique from those of axonemal dyneins. These characteristics are consistent with the proposal that cytoplasmic dynein plays a universal role in retrograde organelle motility.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 5 (1985), S. 431-446 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microtubules assembled from sea urchin eggs with the use of taxol contain a 77,000-dalton protein as the major nontubulin component [Vallee and Bloom (1983): Proc Natl. Acad. Sci. U.S.A. 80:6259-6263]. We have raised five monoclonal antibodies to this protein to aid in its characterization. Immunoblot analysis of the sea urchin microtubule purification fractions indicated that the protein copurified quantitatively with microtubules. All five antibodies stained the mitotic spindle of dividing sea urchin eggs by immunofluorescence microscopy, indicating that the protein was a component of the mitotic spindle and suggesting that it was actually localized on microtubules in vivo. Immunofluorescent staining of higher resolution was observed in a subpopulation of the coelomic cells found in adult sea urchins, confirming that the 77,000-dalton protein is indeed present on microtubules in vivo. Because taxol was not used for the immunofluorescence experiments, we conclude that the microtubule-associated protein (MAP)-like behavior of the 77,000-dalton protein in vitro was not induced artifactually by taxol. To determine whether this protein is a component of sea urchin microtubules in general, cilia obtained from blastula stage embryos and sperm tail flagella were analyzed with the antibodies. The protein was undetectable by both immunoblot analysis and immunofluorescence microscopy in both preparations of axonemal microtubules. These results indicated that the 77,000-dalton MAP is restricted to cytoplasmic and mitotic microtubules in the sea urchin. Furthermore, in view of its particular abundance in embryos, whose microtubules are devoted substantially to mitosis, the 77,000-dalton MAP is likely to play an important role in regulating the activity of mitotic spindle microtubules in the sea urchin.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...