Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A meeting of the Taylor Vortex Flow Working Party was held at the University of Karlsruhe from 20–26th May, 1985. It was attended by fifty-three engineers, mathematicians, physicists and chemists from Australia, Belgium, France, United Kingdom, U.S.A. and West Germany. During the colloquium, twenty-three papers were presented and discussed. The contributions covered the whole range of the subject including end-and initial-effects, new geometries, new working fluids and also wavy mode and time-dependent Taylor vortex flows. This report gives brief summaries of the papers presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 199-215 
    ISSN: 0271-2091
    Keywords: air-conditioning unit ; k-∊ model ; Reynolds stress model ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Details are given of a study to obtain experimental data in an idealized environment for the purpose of evaluating the corresponding computational predictions and which supplement parallel measurements made in actual packaged air-conditioning units. The system consisted of a purpose-built low-speed wind tunnel with a working section constructed to reproduce particular features of the real units. In the experiment, both the mean velocity profiles and turbulence properties of the flow are obtained from triple-hot-wire anemometry measurements. A numerical model, based on finite volume methodology, was used to obtain the solution of the Reynolds-averaged Navier-Stokes equations for incompressible isothermal flow. The Reynolds stress terms in the equations are calculated using the standard k-∊ model and second-moment closure (Reynolds stress) models. The accuracy of the two models was evaluated against the experimental measurements made 10 mm downstream of a baffle. The results show that the standard k-∊ model gave the better agreement except in regions of strong recirculation. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 9 (1975), S. 17-38 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The results of a finite difference analysis are presented for the problem of incompressible laminar flow heat transfer in concentric annuli with simultaneously developing hydrodynamic and thermal boundary layers, the boundary conditions of one wall being isothermal and the other wall adiabatic. This corresponds to the fundamental solution of the third kind according to the four fundamental solutions classified by Reynolds, Lundberg and McCuen1.Firstly, the hydrodynamic entry length problem, based on the boundary layer simplifications of the Navier-Stokes equations, was solved by means of an extension of the linearized finite difference scheme used previously by Bodia and Osterle2 to solve a similar problem between parallel plates. The energy equation is then solved, using the velocity profiles previously obtained, by means of an implicit finite difference technique.The accuracy of the numerical solution was checked by comparing results for the annulus of radius ratio 0.25 with the avaiable solution of Shumway and McEligot3.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...