Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 229-241 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions. Experimental results obtained in a jet-stirred reactor (JSR) at 1 and 10 atm, 0.2≤φ≤2.5, and 800≤T≤1300 K were modeled, in addition to those generated in a shock tube at 13 and 40 bar, φ=1.0 and 650≤T≤1300 K. The JSR results are particularly valuable as they include concentration profiles of reactants, intermediates, and products pertinent to the oxidation of DME. These data test the kinetic model severely, as it must be able to predict the correct distribution and concentrations of intermediate and final products formed in the oxidation process. Additionally, the shock-tube results are very useful, as they were taken at low temperatures and at high pressures, and thus undergo negative temperature dependence (NTC) behavior. This behavior is characteristic of the oxidation of saturated hydrocarbon fuels, (e.g., the primary reference fuels, n-heptane and iso-octane) under similar conditions. The numerical model consists of 78 chemical species and 336 chemical reactions. The thermodynamic properties of unknown species pertaining to DME oxidation were calculated using THERM. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 229-241, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...