Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Years
Language
  • 1
    Title: Column generation /
    Contributer: Desaulniers, Guy , Desrosiers, Jacques , Solomon, Marius M.
    Edition: 1
    Publisher: New York :Springer,
    Year of publication: 2005
    Pages: XV, 358 S.
    Series Statement: GERAD 25th anniversary series
    ISBN: 0-387-25485-4
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: The tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to be operated the next day. The aim of this paper is to develop an operationally flexible tail assignment that satisfies short-range---within the next three days---aircraft maintenance requirements and performs the aircraft/flight gate assignment for each input line-of-flight. While maintenance plans commonly span multiple days, the related tail assignment problems can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by extending the one-day routes aircraft maintenance routing approach to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A mathematical model is presented that integrates the gate assignment and maintenance planning problems. To increase the satisfaction of maintenance requirements, an iterative algorithm is developed that modifies the fixed lines-of-flight provided as input to the tail assignment problem. The tail assignment problem and iterative algorithm are demonstrated to effectively satisfy maintenance requirements within appropriate run times using input data collected from three different airlines.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: The tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of this paper is to develop an operationally flexible method, based upon the one-day routes business model, to compute tail assignments that satisfy short-range—within the next three days—aircraft maintenance requirements. While maintenance plans commonly span multiple days, the methods used to compute tail assignments for the given plans can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by using solutions from the one-day routes aircraft maintenance routing approach as input. The daily tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A computational study will be performed to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-flight to reduce maintenance misalignments. The daily tail assignment problem and the developed algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements when evaluated using input data collected from three different airlines.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...