Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 153-155 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 18 (1982), S. 1260-1263 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 20 (1984), S. 101-119 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A method is described to derive finite element schemes for the scalar convection equation in one or more space dimensions. To produce accurate temporal differencing, the method employs forward-time Taylor series expansions including time derivatives of second- and third-order which are evaluated from the governing partial differential equation. This yields a generalized time-discretized equation which is successively discretized in space by means of the standard Bubnov-Galerkin finite element method. The technique is illustrated first in one space dimension. With linear elements and Euler, leap-frog and Crank-Nicolson time stepping, several interesting relations with standard Galerkin and recently developed Petrov-Galerkin methods emerge and the new Taylor-Galerkin schemes are found to exhibit particularly high phase-accuracy with minimal numerical damping. The method is successively extended to deal with variable coefficient problems and multi-dimensional situations.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...