Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Key words Acetylcholine ; Brain slices ; Cerebral cortex ; Long-term depression ; Rat ; Synaptic plasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The ability of layer I activation to facilitate the induction of long-term potentiation (LTP) in layer II/III horizontal connections of motor cortex (MI) was examined in rat brain slice preparations. Field potentials evoked in layer I and layer II/III horizontal pathways were recorded from radially aligned MI sites. While theta burst stimulation (TBS) of layer II/III pathways alone failed to induce LTP, simultaneous TBS of layer I and layer II/III inputs on alternate sides of the recording electrodes induced LTP in the layer II/III input in 8 out of 13 slices (mean change +20±6%; N=13). In the same cases, the layer I connections showed mixed effects: LTP in three cases, LTD in five cases, and no modification in five slices. Despite the facilitatory effect of layer I activation on layer II/III LTP induction, we found that the critical circuitry for this effect was outside layer I. Cutting the layer I fibers selectively in the slice did not prevent layer II/III LTP induction, while cuts preserving only layer I blocked layer II/III LTP after conjoint I+II/III TBS. Cholinergic fibers were evaluated as candidates for the facilitatory effect because they branch widely in both layers and they are thought to participate in synaptic modification. The cholinergic contribution to layer II/III LTP facilitation was investigated using bath application of muscarinic antagonists. Muscarinic blockade prevented facilitation of layer II/III LTP by layer I coactivation. Instead, conjoint stimulation in 10 µM atropine produced long-term depression (LTD) of layer II/III (–18±9%; N=11) as well as of layer I (–21±6%; N=11) horizontal responses. These results indicate that connections formed within layer I are ineffective in promoting LTP in the deeper-lying horizontal connections; the critical route by which layer I stimulation influenced LTP induction required the circuitry in the deeper layers, particularly the cholinergic system. Thus, it appears that diffuse cholinergic afferents provide an additional route to regulate activity-dependent synaptic modificaton in horizontal cortical connections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 8 (1996), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The possibility for long-term depression (LTD) of synaptic transmission in layer 11/11 I horizontal connections within motor cortex was investigated using field potentials and intracellular recordings in rat brain slices. The LTD was induced by low-frequency stimulation at 2 Hz for 10 min in sites displaced horizontally by 0.5 mm from the stimulating electrode. Response amplitude measured 25-30 min after 2 Hz stimulation ended was 79% of baseline values (n= 13) at half maximal stimulation and 59% when 2 Hz stimulus intensity was doubled (n= 10). In 13/15 tested cases LTD in horizontal connections was specific to the activated pathway. Intracellular recordings from six neurons confirmed synaptic character of response depression. Horizontal connections in which LTD was induced retained the capability of increasing synaptic strength. Long-term potentiation could be induced in previously depressed pathways by simultaneous theta burst stimulation of two converging horizontal inputs combined with transient local application of GABAA receptor antagonist bicuculline methiodide (mean increase: 45 ± 8%, n = 6) or by simultaneous theta burst stimulation of converging horizontal and vertical inputs (mean change: 26 5 6%, n = 5). These data demonstrate that activity-dependent mechanisms may regulate bidirectionally the effectiveness of horizontal synaptic coupling between cortical neurons, thus forming a potential mechanism for plasticity of cortical connections and the representation patterns they support.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 23 (2000), S. 393-415 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract One fundamental function of primary motor cortex (MI) is to control voluntary movements. Recent evidence suggests that this role emerges from distributed networks rather than discrete representations and that in adult mammals these networks are capable of modification. Neuronal recordings and activation patterns revealed with neuroimaging methods have shown considerable plasticity of MI representations and cell properties following pathological or traumatic changes and in relation to everyday experience, including motor-skill learning and cognitive motor actions. The intrinsic horizontal neuronal connections in MI are a strong candidate substrate for map reorganization: They interconnect large regions of MI, they show activity-dependent plasticity, and they modify in association with skill learning. These findings suggest that MI cortex is not simply a static motor control structure. It also contains a dynamic substrate that participates in motor learning and possibly in cognitive events as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The activity of motor cortex (MI) neurons conveys movement intent sufficiently well to be used as a control signal to operate artificial devices, but until now this has called for extensive training or has been confined to a limited movement repertoire. Here we show how activity from a few ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...