Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd, UK
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Growth under elevated [CO2] promoted spring frost damage in field grown seedlings of snow gum (Eucalyptus pauciflora Sieb. ex Spreng.), one of the most frost tolerant of eucalypts. Freezing began in the leaf midvein, consistent with it being a major site of frost damage under field conditions. The average ice nucleation temperature was higher in leaves grown under elevated [CO2] (– 5·7 °C versus – 4·3 °C), consistent with the greater incidence of frost damage in these leaves (34% versus 68% of leaves damaged). These results have major implications for agriculture, forestry and vegetation dynamics, as an increase in frost susceptibility may reduce potential gains in productivity from CO2 fertilization and may affect predictions of vegetation change based on increasing temperature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Growth of snow gum seedlings (Eucalyptus pauciflora Sieb. ex Spreng.) was studied in response to differences in microclimate caused by differential heat exchange between seedlings, grass and bare, moist soil during winter and spring. Seedlings were planted in a pasture either directly into grassy groundcover or in circular patches of bare soil of 30, 60 or 120 cm in diameter. There were no differences in maximum air temperatures at seedling leaf height between treatments. However, minimum air temperature increased by 2 °C with increase in patch diameter from 0 to 120 cm such that seedlings surrounded by grass experienced lower minimum temperatures with more frequent and more severe frosts than seedlings growing in large patches of bare soil. These small-scale differences in minimum temperature affected both photosynthetic and growth processes. Over winter, seedlings were photoinhibited, with depression in midday Fv/Fm linearly related to minimum temperatures. In spring, repeated frosts and lower minimum temperatures led to a delay in the recovery of Fv/Fm, a delay in bud-break, damage to elongating stems and developing leaves, lower rates of stem elongation, and ultimately a shorter growing season for seedlings in grass compared to those in bare soil patches. Thus, microclimate above grass adversely affects spring growth of juvenile Eucalyptus pauciflora and may account for much of the competitive inhibition of tree seedling growth by grass during spring.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...