Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Degradation of 2,4,6-trinitrotoluene (TNT) by the white-rot fungus Bjerkandera adusta DSM 3375 was studied in relation to extracellular ligninolytic activities. The Mn(II)-dependent peroxidase, the only ligninolytic enzyme detectable, reached a maximum activity of 600 ± 159 U/l after incubation in mineral medium with a sufficient nitrogen source. In contrast, the highest extent of [14C]TNT mineralization was detected in malt extract broth, so that the ability of B. adusta to mineralize TNT did not parallel ligninolytic activity. The microsomal fraction of cells grown in the presence of TNT was found to contain 11 pmol cytochrome P-450/mg protein. In cells grown without TNT, no microsomal cytochrome P-450 could be found. Instead, 14 pmol P-450/mg protein was present in the cytosolic fraction of these cells. Cytochrome P-450 apparently affected the TNT metabolism, as shown by inhibitory studies. Addition of the cytochrome P-450 inhibitor piperonyl butoxide diminished the 14CO2 release from 21% to 0.9%, as determined after 23 days of incubation, while 1-aminobenzotriazole and metyrapone decreased the mineralization to 8.6% and 6.3% respectively. Mass-balance analysis of TNT degradation in liquid cultures revealed that, by inhibition of cytochrome P-450, the TNT-derived radioactivity associated with biomass and with polar, water-soluble metabolites decreased from 93.9% to 15.0% and the fraction of radiolabelled metabolites extractable with organic solvents fell to 92.6%. The TNT metabolites of this fraction were identified as aminodinitrotoluenes, indicating that this initial transformation product of TNT may function as a substrate for cytochrome-P-450-dependent reactions in B. adusta.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the hippocampus of patients with therapy-refractory temporal lobe epilepsy, glial cells of area CA1 might be less able to take up potassium ions via barium-sensitive inwardly rectifying and voltage-independent potassium channels. Using ion-selective microelectrodes we investigated the effects of barium on rises in [K+]o induced by repetitive alvear stimulation in slices from surgically removed hippocampi with and without Ammon's horn sclerosis (AHS and non-AHS). In non-AHS tissue, barium augmented rises in [K+]o by 147% and prolonged the half time of recovery by 90%. The barium effect was reversible, concentration dependent, and persisted in the presence of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), N-methyl-d-aspartate (NMDA) and γ-aminobutyric acid [GABA(A)] receptor antagonists. In AHS tissue, barium caused a decrease in the baseline level of [K+]o. In contrast to non-AHS slices, in AHS slices with intact synaptic transmission, barium had no effect on the stimulus-induced rises of [K+]o, and the half time of recovery from the rise was less prolonged (by 57%). Under conditions of blocked synaptic transmission, barium augmented stimulus-induced rises in [K+]o, but only by 40%. In both tissues, barium significantly reduced negative slow-field potentials following repetitive stimulation but did not alter the mean population spike amplitude. The findings suggest a significant contribution of glial barium-sensitive K+-channels to K+-buffering in non-AHS tissue and an impairment of glial barium-sensitive K+-uptake in AHS tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neuronal fibres of the hippocampal formation of normal and chronic epileptic rats were investigated by fluorescent tracing methods using the pilocarpine model of limbic epilepsy. Two months after onset of spontaneous limbic seizures, hippocampal slices were prepared and maintained in vitro for 10 h. Small crystals of fluorescent dye [fluorescein (fluoro-emerald®) and tetramethylrhodamine (fluoro-ruby®)] were applied to different hippocampal regions. The main findings were: (i) in control rats there was no supragranular labelling when the mossy fibre tract was stained in stratum radiatum of area CA3. However, in epileptic rats a fibre network in the inner molecular layer of the dentate gyrus was retrogradely labelled; (ii) a retrograde innervation of area CA3 by CA1 pyramidal cells was disclosed by labelling remote CA1 neurons after dye injection into the stratum radiatum of area CA3 in chronic epileptic rats; (iii) labelling of CA1 neurons apart from the injection site within area CA1 was observed in epileptic rats but not in control animals; and (iv), a subicular-hippocampal projection was present in pilocarpine-treated rats when the tracer was injected just below the stratum pyramidale of area CA1. The findings show that fibre rearrangement in distinct regions of the epileptic hippocampal formation can occur as an aftermath of pilocarpine-induced status epilepticus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...