Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6830
    Keywords: antipsychotic ; neuroleptic ; gastropod ; monoamine ; catecholamine ; serotonin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The effects of long term administration of micromolar concentrations of the D2 antagonist haloperidol upon monoaminergic neurons in the snailLymnaea stagnalis was investigated. 2. Treatment by bath application with 0.5–2.0 micromolar haloperidol, caused a significant, continuous depletion of dopamine levels in the nervous system as revealed by high performance liquid chromatography. 3. A transient depletion of serotonin was also observed, but DOPA and norepinephrine levels were unaffected. Similar depletion of dopamine was observed after the land snail,Achatina fulica, was injected with haloperidol on each of 4 consecutive days. 4. The depletion of dopamine as revealed with glyoxylate-induced fluorescence inLymnaea appears to be restricted to a subpopulation of catecholaminergic neurons which are immuno-negative for tyrosine hydroxylase, the synthetic enzyme responsible for the conversion of tyrosine to DOPA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 16 (1987), S. 613-626 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The synaptic input to crayfish (Orconectes limosus) stretch receptor neurons, and the synaptic interactions between the inhibitory and excitatory efferents were analysed by electron microscopy of serial sections. Several novel types of synaptic connections have been observed: (i) inhibitory synaptic input on the axon hillock and initial axon segment; (ii) serial synaptic terminals on the sensory cell body; (iii) simultaneous synaptic contacts of the same inhibitory terminal with sensory dendrites and muscle fibres; (iv) reciprocal synapses between the two types of inhibitory efferents; and (v) inhibitory synapses on the primary inhibitory axon. The possible functional significance of these synapses is discussed in the light of earlier electrophysiological and pharmacological findings.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Summary The distribution of serotonin-, tyrosine hydroxylase-, and FMRFamide-immunoreactive neuronal elements, as well as the concentrations of serotonin and dopamine in the different parts of the gastrointestinal tract, were studied in the snail Helix pomatia. The sensitivity of the spontaneous contractions of the alimentary tract to serotonin, dopamine, and FMRFamide was also tested. Serotonin-, tyrosine hydroxylase-, and FMRFamide-immunoreactive elements could be demonstrated in each part of the gastrointestinal tract, but they showed different innervation patterns. Serotonin- and tyrosine hydroxylase-immunoreactive elements were dominant in the submucosal layer, whereas FMRFamide-immunoreactive elements were dominant in both the mucosal and submucosal layers. Tyrosine hydroxylase-immunoreactive elements were confined to the longitudinal muscle trabeculae of submucosa, whereas serotonin-immunoreactive elements were distributed throughout the submucosal layer. No serotonin-immunoreactive cell bodies, but only fibers, could be detected in the gastrointestinal tract, and therefore they represent extrinsic elements. Tyrosine hydroxylase- and FMRFamide-immunoreactive cell bodies represent intrinsic elements of the tract. The occurrence and density of the serotonin- and tyrosine hydroxylase-immunoreactive elements showed significant differences in the different parts of the alimentary tract, in accordance with HPLC assays, which revealed a significant frontocaudal decrease in both the serotonin (from 2.11 to 1.21 pM/mg) and dopamine (from 3.28 to 0.52 pM/mg) contents of the different parts of the alimentary tract. Dopamine at 10-5 M concentration proved to be effective only on the longitudinal muscles by increasing the tone and frequency of contractions, but was ineffective on the circular muscles. Serotonin affected both the longitudinal and circular muscles. Serotonin at 10-5 M concentration decreased the tone and increased the frequency of low-amplitude contractions of the longitudinal muscles of the esophagus and the gizzard but increased both the tone and frequency of the crop. Serotonin at 10-9 M concentration slightly decreased the tone and blocked the contractions of the circular muscles in the crop but at 10-5 M concentration induced contractions of the circular muscles in the gizzard. FMRFamide at 10-6 M concentration decreased the tone and was shown to block the contractions of both the longitudinal and circular muscles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Neuropeptides Mytilus inhibitory peptides (MIP) Immunocytochemistry Central and peripheral nervous system Invertebrates Lymnaea stagnalis, Helix pomatia (Gastropoda, Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The distribution and neuroanatomy of Mytilus inhibitory peptides (MIP)-containing neurons in the central nervous system and their innervation pattern in the peripheral nervous system of the pulmonate snail species, Lymnaea stagnalis and Helix pomatia, have been investigated immunocytochemically, by applying an antibody raised to GSPMFVamide. A significant number of immunoreactive neurons occurs in the central nervous system of both species (Lymnaea: ca 600–700, Helix: ca 400–500), but their distribution is different. In Lymnaea, labeled neurons are found in all central ganglia where a number of large and giant neurons, previously identified physiologically, reveal MIP immunoreactivity. In Helix, most of the immunolabeled neurons are small (12–30 µm) and concentrated in the buccal and cerebral ganglia; the parietal ganglia are free of labeled cells. In both species, the ganglionic neuropils, peripheral nerves, connectives, and commissures are richly supplied with immunolabeled fibers. The MIP-immunoreactive innervation pattern in the heart, intestine, buccal mass and radula, and foot is similar in both species, with labeled axonal bundles and terminal-like arborizations (buccal mass, foot) or a network of varicose fibers (heart, intestine). Intrinsic neurons are not present in these tissues. The application of GSPYFVamide inhibits the spontaneous contractions of the esophageal longitudinal musculature in Helix, indicating the bioactivity of the peptide. An outside-out patch-clamp technique has demonstrated that GSPYFVamide opens the K+ channels in central nerve cells of Helix. Injection of GSPYFVamide into the body cavity inhibits the feeding of starved Helix. A wide modulatory role of MIP at central and peripheral levels is suggested in Lymnaea and Helix, including the participation in intercellular signalling processes and remote neurohormonal-like control effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0878
    Keywords: Key words NADPH-diaphorase ; Nitric oxide synthase ; Development ; ontogenetic ; Lymnaea stagnalis (Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Nicotinamide-adenine-dinucleotide-phosphate-diaphorase (NADPH-d) histochemistry has been applied in the present study to determine the distribution of putative nitric oxide (nitric oxide synthase)-producing cells during embryonic and early postembryonic development in the pond snail, Lymnaea stagnalis L., with special reference to the nervous system. The first NADPH-d-positive structures appear as early as 18% of development (E18, trochophore stage) and correspond to the pair of protonephridia. These structures later show disintegration, although after metamorphosis (E26=75%) staining of their individually spreading cells can be observed until hatching. Peripheral sensory neurons in the foot, mantle edge and lips, and their afferents projecting to the central nervous system reveal NADPH-d activity in the postmetamorphosis period (E25–E27=E60%–E80%) of embryogenesis. After hatching (P1–P3), a number of stained sensory cells appear in the pharynx and esophagus. Some NADPH-d positive neuronal perikarya occur in the pedal and pleural ganglia, and a few weakly stained cells in the cerebral and buccal ganglia of juvenile snails. At the same time, a continuous bundle of reactive fibers is formed in the neuropil both through and through around the circumesophageal ganglion ring. The localization of NADPH-d activity in the developing nervous system of Lymnaea suggests that nitric oxide participates mainly in sensory processes. However, its role in specific intraganglionic integrative events cannot be excluded following embryonic metamorphosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Key words Pigment-dispersing hormone ; Immunocytochemistry ; Central nervous system ; Gastropoda ; Helix pomatia ; Lymnaea stagnalis (Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract By using an antiserum raised against a crustacean β-pigment-dispersing hormone (PDH), the distribution and chemical neuroanatomy of PDH-like immunoreactive neurons was investigated in the central nervous system of the gastropod snails, Helix pomatia and Lymnaea stagnalis. The number of immunoreactive cells in the Helix central nervous system was found to be large (700–900), whereas in Lymnaea, only a limited number (50–60) of neurons showed immunoreactivity. The immunostained neurons in Helix were characterized by rich arborizations in all central ganglia and revealed massive innervation of all peripheral nerves and the neural (connective tissue) sheath around the ganglia and peripheral nerve trunks. A small number of Helix nerve cell bodies in the viscero-parietal ganglion complex were also found to be innervated by PDH-like immunoreactive processes. Hence, a complex central and peripheral regulatory role, including neurohormonal actions, is suggested for a PDH-like substance in Helix, whereas the sites of action may be more limited in Lymnaea.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 189 (1978), S. 257-266 
    ISSN: 1432-0878
    Keywords: Neuromuscular junction ; Hindgut ; Crustacea ; Catecholamine ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The crustacean species Pacifastacus leniusculus and Gammarus pulex were investigated by electron microscopy in a search for possible neuromuscular junctions in the hindgut, which has a rich supply of catecholaminergic fibres. True neuromuscular synapses were found in both species between nerve terminals containing dense-core vesicles (80–110 nm in diam.) and muscle fibres. We suggest that the dense-core vesicle terminals contain a catecholamine, and this is supported by ultrahistochemical tests for monoamines. Two types of junctions are found: one in which the nerve terminal is embedded in the muscle cell (both species) and one in which protrusions from the muscle cell meet nerve terminals (Pacifastacus). Gammarus pulex, which has only circular muscles in the hindgut, has only catecholaminergic innervation, whereas Pacifastacus leniusculus has circular and longitudinal muscles both with at least two types of innervation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Serotonin (5HT) ; Immunocytochemistry ; 5,6-Dihydroxytryptamine ; Central nervous system ; Helix pomatia (Mollusca)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of serotonin (5HT)-containing neurons in the central nervous system of the snail Helix pomatia has been determined in whole-mount preparations by use of immunocytochemical and in vivo 5,6-dihydroxy-tryptamine labelling. 5HT-immunoreactive neuronal somata occur in all but the buccal and pleural ganglia. Immunoreactive fibres are present throughout the central nervous system. The 5HT-immunoreactive neuronal somata characteristically appear in groups, located mainly in the cerebral, pedal, visceral and right parietal ganglia. The majority of 5HT-immunoreactive neurons is located in the pedal ganglia. Additionally a dense network of 5HT-immunoreactive varicose fibres is found in the neural sheath of the central nervous system including all the nerves and ganglia. The number and distribution of 5HT-immunoreactive neurons correlates with that demonstrated by 5,6-dihydroxytryptamine labelling method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Serotonin ; Dopamin ; Immunocytochemistry ; Terminal ganglion ; Acheta domestica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution and ultrastructure of serotonin- and dopamine-immunoreactive (5-HTi and DAi) neurones have been investigated in the terminal ganglion of the cricket, Acheta domestica, using a pre-embedding chopper technique. Special attention has been paid to the immunoreactive structures in the neuropil. 5-HTi structures are extensively distributed and densely packed throughout the 5 neuromeres of the terminal ganglion and originate from several interneurones and efferent neurones. In contrast, DAi fibres are distributed sparsely although they extend to all neuromeres of the ganglion and originate from 6 interneurons only. For both 5-HTi and DAi neurones characteristic axonal projections and branching patterns can be distinguished. The 5-HTi axons exhibit rich varicose arborizations, whereas DAi neurones possess fewer varicosities in the neuropil. Electron microscopy shows that 5-HTi varicosities contain small (∼ 60 nm) and large (∼ 100 nm) agranular vesicles, and large (∼ 100 nm) granular vesicles, whereas in DAi varicosities small (∼ 60 nm) agranular and large (∼ 100 nm) granular vesicles are seen. Both 5-HTi and DAi varicosities form synaptic contacts. We conclude that both serotonin and dopamine may be used as neurotransmitters in the terminal ganglion of the cricket.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0878
    Keywords: Serotonin (5-HT) ; Genital chamber ; Immuno-cytochemistry ; Electron microscopy ; Cricket, Acheta domestica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The serotonergic innervation of the genital chamber of the female cricket, Acheta domestica, has been investigated applying anti-serotonin (5-HT) immunocyto-chemistry at both light- and electron-microscopic levels as well as using conventional electron microscopy. Whole mount and pre-embedding chopper techniques of immuno-cytochemistry reveal a dense 5-HT-immunoreactive network of varicose fibers in the musculature of the genital chamber. All of these immunoreactive fibers originate from the efferent serotonergic neuron projecting through the nerve 8v to the genital chamber (Hustert and Topel 1986; Elekes et al. 1987). At the electron-microscopic level, 5-HT-immunoreactive nerve terminals, which contain small (50–60 nm) and large (∼ 100 nm) agranular vesicles as well as granular vesicles (∼100nm), contact the muscle fibers or the sarcoplasmic processes without establishing specialized neuromuscular connections. In addition to the 5-HT-immunoreactive axons, two types of immunonegative axons can also be found in the musculature. By use of conventional electron microscopy, three ultrastructurally distinct types of axon processes can be observed, one of which resembles 5-HT-immunoreactive axons. While the majority of the varicosities do not synapse on the muscle fibers, terminals containing small (50–60 nm) agranular vesicles occasionally form specialized neuromuscular contacts. It is suggested that the 5-HTergic innervation plays a non-synaptic modulatory role in the regulation circular musculature in the genital chamber of the cricket, while the musculature as a whole may be influenced by both synaptic and modulatory mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...