Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF), has been calculated during two intervals when the IMF had an approximately constant southward component (1100- 2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990). The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday’s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday’s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between \sim35RE and \sim75RE downstream in the tail.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The geomagnetic response to the passage of a coronal mass ejection (CME) is studied. The passage of the CME resulted in a storm sudden commencement (SSC) at 2243 UT on March 20 1990 with disturbed magnetic activity during the following 24 h. The auroral, sub-auroral and equatorial magnetic response to the southward turning at 1314 (±5) UT on March 21 and the equatorial response to the southward turning associated with the SSC on 20 March are discussed in terms of existing models. It is found that the auroral and sub-auroral response to the southward turning associated with the SSC is a factor 2 or more quicker than normal due to the shock in the solar wind dynamic pressure. The low-latitude response time to the south-ward turning, characterised by Dst and the magneto-pause current corrected Dst*, is una.ected by the shock. Dst and Dst*, characteristic of the equatorial magnetic field, responded to the 1314 (±5) UT southward turning prior to the first observed substorm expansion phase onset, suggesting that a dayside loading process was responsible for the initial enhancement in the ring current rather than nightside particle injection. The response time of the auroral and sub-auroral magnetic field to the southward turning at 1314 (±5) UT on March 21 is measured at a variety of longitudes and latitudes. The azimuthal propagation velocity of the response to the southward turning varied considerably with latitude, ranging from #x0223C;8 km s−1 at 67°N to ∼4 kms−1 at 55°N. The southward velocity of the equatorward boundary of the northern polar convection pattern has been measured. This velocity was ∼1.2 km s−1 at 1600 MLT, although there was evidence that this may vary at different local times.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...