Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-1948
    Keywords: Ruthenium ; S ligands ; Hydrazine ; Diazene ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the search for ruthenium complexes with sulfur-dominated coordination spheres that bind, activate, or stabilize nitrogenase relevant molecules, complexes containing the new and robust tetradentate ligand ‘tpS4’-H2 were synthesized. Treatment of [RuCl2(PPh3)3] with ‘tpS4’2- gives [Ru(PPh3)2(‘tpS4’)] (1), which contains two labile PPh3 ligands. The reaction of 1 with PEt3 or DMSO led to substitution of both PPh3 ligands, yielding [Ru(PEt3)2(‘tpS4’)] (2) and [Ru(DMSO)2(‘tpS4’)] (3), respectively. When treated with nitrogenous ligands, complex 1 lost only one PPh3 ligand to yield [Ru(L)(PPh3)(‘tpS4’)] complexes where L = py (7), NH3 (8), N2H4 (9), NH2NHMe (10), and CH3CN (12), all of which are labile. The labile acetonitrile complex [Ru(CH3CN)(PPh3)(‘tpS4’)] (12) proved to be particularly suited as a precursor for the syntheses of other [Ru(L)(PPh3)(‘tpS4’)] complexes. The 18 and 19 valence electron NO complexes [Ru(NO)(PPh3)(‘tpS4’)]BF4 (13) and [Ru(NO)(PPh3)(‘tpS4’)] (14), (NEt4)[Ru(N3)(PPh3)(‘tpS4’)] (15), [Ru(I)(PPh3)(‘tpS4’)] (16), and [Ru(N3)(PPh3)(‘tpS4’)] (17) were obtained starting from complex 12. The labile mononuclear hydrazine complex [Ru(N2H4)(PPh3)(‘tpS4’)] (9) gave the dinuclear complex [μ-N2H4{Ru(PPh3)(‘tpS4’)}2] (18) by dissociation of hydrazine. The dinuclear diazene complex [μ-N2H2{Ru(PPh3)(‘tpS4’)}2] (19) was obtained by oxidation of 9 and more readily from [Ru(CH3CN)(PPh3)(‘tpS4’)] (12) and N2H2, which was generated in situ from K2N2(CO2)2 and acetic acid. The molecular structures of 7, 13, 16, 18, and 19 were determined by X-ray structure analyses. The complexes 18 and 19 represent the first complexes containing the hydrazine/diazene couple, which enables us to compare both the bonding features and the formation of N-H···S bridges when hydrazine and diazene bind to transition metal sulfur sites.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Ruthenium ; Sulfur ligands ; Exchange reactions ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In a quest for ruthenium complexes having [RuNS4] cores, a non-fluxional configuration, trans-thiolate donors, and exchangeable coligands L, [Ru(L)(‘pyS4’)] complexes have been synthesized [‘pyS4’2- = 2,6-bis(2-mercaptophenylthio)dimethylpyridine(2-)]. Treatment of [RuCl2(PPh3)3] with ‘pyS4’2- gave [Ru(PPh3)(‘pyS4’)] (1). Alkylation of 1 with excess MeI yielded [Ru(PPh3)(‘pyS4’-Me2)]I2 (2). [Ru(DMSO)(‘pyS4’)] (3) was obtained from [RuCl2(DMSO)4] and ‘pyS4’2-. The PPh3 or DMSO coligands in 1, 2, and 3 proved to be very inert to substitution. Only the DMSO could be displaced by CO under drastic conditions yielding [Ru(CO)(‘pyS4’)] (4). Treatment of [RuCl2(CH3CN)4] with ‘pyS4’2- yielded [Ru(‘pyS4’)]2 (5); in the presence of PEt3 or N2H4 mononuclear [Ru(PEt3)(‘pyS4’)] (6) and [Ru(N2H4)(‘pyS4’)] (7) were formed. Template alkylation of NBu4[Ru(NO)(S2C6H4)2] with 2,6-bis(tosyloxymethyl)pyridine gave [Ru(NO)(‘pyS4’)]Tos (8). Complex 8 proved to be the best suited precursor for L exchange reactions. Under reducing conditions, 8 releases its NO ligand and the resulting [Ru(‘pyS4’)] fragments can combine either with each other to give 5, or with PEt3 and N2H4 to yield 6 and 7, respectively. All complexes have been characterized by spectroscopic methods and elemental analysis; 1, 2, 3, and 4 have also been submitted to X-ray structure analysis.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-1948
    Keywords: Cleavage reactions ; C-S cleavage ; Ligand synthesis ; Osmium ; Ruthenium ; S ligands ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In search of a tetradentate thioether thiolate ligand that is more stable toward reductive C-S bond cleavage than the parent ligand ′S4′-H2 [′S4′-H2 = 1,2-bis(2-mercaptophenylthio)ethane], the novel tris-phenylene ligand ′tpS4′-H2 (3) [′tpS4′-H2 = 1,2-bis(2-mercaptophenylthio)phenylene] was synthesized via the nitro and amine compounds ′tpS2(NO2)2′ (1) and ′tpS2(NH2)2′ (2). The coordination of ′tpS4′2- to ruthenium centers resulted in the formation of six-coordinate [Ru(L)(PR3)(′tpS4′)] complexes (R = Et, L = PEt34; R = Ph, L = PPh35, CO 6, DMSO 7). The X-ray structure analyses of 4 and 6 revealed that the thiolate donors occupy trans positions; consequently the ′tpS4′2- ligand coordinates in the same way as the ′S4′2- ligand. The stability of the ′tpS4′2- ligand toward reductive C-S cleavage reactions was shown by the synthesis of [Os(PEt3)2(′tpS4′)] (8). In contrast to [Os(PEt3)2(′S4′)], 8 is stable for unlimited periods of time. The X-ray structure analysis of [Ru(Cl)2(PPh3)(′tpS2(NH2)2′)] (9) demonstrates that the potentially tetradentate ligand ′tpS2(NH2)2′ coordinates in 9 through three donors leaving one NH2 donor dangling.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...