Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Growth and photosynthesis of grapevine (Vitis vinifera L.) planted on two sloping cool climate vineyards were measured during the early growth season. At both vineyards, a small difference in mean minimum air temperature (1–3 °C) between two microsites accumulated over time, producing differences in shoot growth rate. The growth rates of the warmer (upper) microsite were 34–63% higher than the cooler (lower) site. Photosynthesis measurements of both east and west canopy sides revealed that the difference in carbon gain between the warmer and cooler microsites was due to low temperatures restricting the photosynthetic contribution of east-facing leaves. East-facing leaves at the warmer microsite experienced less time at suboptimal temperature while being exposed to high irradiance, contributing to an average 10% greater net carbon gain compared to the east-facing leaves at the cooler microsite. This chilling-induced reduction in photosynthesis was not due to net photo-inhibition. Further analysis revealed that CO2- and light-saturated photosynthesis of grapevines was restricted by stomatal closure from 15 to 25 °C and by a limitation of RuBP regeneration and/or end-product limitation from 5 to 15 °C. Changes in photosynthetic carboxylation efficiency implied that Rubisco activity may also play a regulatory role at all temperatures. This restriction of total photosynthetic carbon gain is proposed to be a major contributor to the temperature dependence of growth rate at both vineyards during the early season growth period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Carbonic anhydrase (CA, EC 4.2.1.1) catalyses the first reaction in the C4 photosynthetic pathway, the conversion of atmospheric CO2 to bicarbonate in the mesophyll cytosol. To examine the importance of the enzyme to the functioning of the C4 photosynthetic pathway, Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with an antisense construct in which the cDNA encoding a putative cytosolic CA (CA3) was placed under the control of a constitutive promoter. Some of the primary transformants had impaired CO2 assimilation rates and required high CO2 for growth. The T1 progeny of four primary transformants were used to examine the quantitative relationship between leaf CA activity and CO2 assimilation rate. CA activity was determined in leaf extracts with a mass spectrometric technique that measured the rate of 18O exchange from doubly labelled 13C18O2. Steady-state CO2 assimilation rates were unaffected by a decrease in CA activity until CA activity was less than 20% of wild type when they decreased steeply. Transformants with less than 10% of wild-type CA activity had very low CO2 assimilation rates and grew poorly at ambient CO2 partial pressure. Reduction in CA activity also increased the CO2 partial pressure required to saturate CO2 assimilation rates. The present data show that CA activity is essential for the functioning of the C4 photosynthetic pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 168 (1986), S. 84-93 
    ISSN: 1432-2048
    Keywords: Benson-Calvin cycle ; Phosphate and photosynthesis ; Photosynthesis ; Photorespiration ; Spinacia (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of phosphate feeding on the influence of low (2%) oxygen on photosynthetic carbon assimilation has been investigated in leaf discs of spinach (Spinacia oleracea L.) at 12°C. The following observations were made. First, after the transition from 20% O2 to 2% O2, the rate of CO2 uptake was inhibited at CO2 concentrations between about 250 and about 800 μl CO2·l-1. Second, phosphate feeding stimulated the rate of CO2 uptake in 20% O2 at higher concentrations of CO2 (500–900 μl·l-1). Third, phosphate feeding stimulated the rate of CO2 uptake in 2% O2 at all but the highest (900 μl·l-1) and lowest 74 (μl·l-1) concentrations of CO2 employed. Phosphate thereby restored the stimulation of photosynthesis by 2% O2 and it did so over a wide range of lower temperatures. Fourth, oscillatory behaviour, however generated, was dampened by phosphate feeding, even at very low concentrations of CO2. Contents of leaf metabolites were measured during the transition to 2% O2 in control and phosphate-fed leaf discs. During this period the ratio glycerate-3-phosphate/triose phosphate rose steeply, but fell again only in the phosphate-treated leaf discs. These data, taken together with measured ATP/ADP ratios, showed that assimilatory power, the ratio [ATP]·[NAD(P)H]/[ADP]·[Pi]·[NAD(P)], decreased when leaves were exposed to 2% O2, but that this decrease was minimised by previous feeding of phosphate. The mechanism of phosphate limitation is discussed in the light of the results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Planta 168 (1986), S. 267-272 
    ISSN: 1432-2048
    Keywords: Rhodophyta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dark respiration in the red macroalga Chondrus crispus was studied under a variety of conditions. The components of respiration were examined using selective inhibitors in order to characterise pathways of respiration and examine regulation of respiration in marine macroalgae. In comparison to respiration rates generally reported for higher-plant leaves and roots, the steady-state rate of O2 consumption by this alga, after 30 min dark pretreatment, was found to be quite low (three- to sixfold lower than in higher plants). The addition of uncoupler had only a slight effect on the basal respiration rate, indicating that in these conditions, substrate supply could be limiting respiration. The addition of KCN inhibited respiration by approx. 60%, indicating the presence of alternative oxidase activity. The coefficient of engagement of the alternative pathway (calculated from the data herein) showed that under normal conditions there was little participation of the alternative pathway in O2 consumption. The response of respiration to O2 tension was examined with and without inhibitors and the apparent K m was 17 to 21 μM. The addition of KCN plus salicylhydroxamic acid almost completely blocked respiration in C. crispus. The hypothesis that respiratory substrate limits respiration in this alga was investigated by measuring respiration rates immediately after periods of photosynthetic activity. It was found that the respiration rate was dependent on the duration of the light period and could increase up to twofold. This stimulated rate of respiration declined in a first-order fashion during the next 20 to 30 min, finally reaching the basal, zero-order rate measured before illumination. These results strongly indicate a change in the nature of the respiratory substrates during this period. No change in the contribution of the alternative pathway of respiration could be detected following light pretreatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Planta 163 (1985), S. 75-83 
    ISSN: 1432-2048
    Keywords: Amaranthus ; Carbon dioxide fixation ; Chlorophyll fluorescence ; C4 plant ; Gomphrena ; Panicum ; Photosynthesis (induction) ; Zea (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Simultaneous measurements of CO2 uptake, transpiration rate, and chlorophyll a fluorescence in leaf strips of C4 plants during the induction phase of photosynthesis are described. The timecourse of CO2 fixation is biphasic with the initial phase occurring within the first 1 to 5 min and the secondary phase consisting of a slow rise to the steady-state rate of photosynthesis. Transpiration rate follows the CO2-fixation timecourse closely but the intercellular CO2 concentration never falls below saturation for C4 plants. Chlorophyll a fluorescence quenching occurs exclusively during the initial fast phase of the CO2-fixation timecourse. The effect of duration of dark pretreatment of leaves on these parameters and the effects of light intensity and CO2 concentration are examined. These results are discussed with respect to the C4 cycle and photochemical and non-photochemical chlorophyll fluorescence quenching.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...