Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 9-22 
    ISSN: 0271-2091
    Keywords: Shock capturing ; Shock tube ; TVD scheme ; Compressible flow ; Fluid dynamics ; Comparison with experiment ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Harten's second-order-accurate total-variation-diminishing (TVD) scheme is applied to calculation of flow from the open end of a shock tube. Comparison of numerical results with available experimental data for overpressure at selected points around the shock tube exit shows good agreement. Numerically indicated positions of the moving shock front and Mach stem also compare well with flow shadowgraph data. Where the problem geometry is sufficiently simple and rectangular gridding can be used, Harten's method affords a good choice for blast wave calculations.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 363-368 
    ISSN: 0271-2091
    Keywords: Silencers ; Noise attenuation ; Shock flow ; Numerical simulation ; Gas dynamics ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The problem of attenuating the noise from weapons firing is studied experimentally and numerically. As a possible method of attenuating the noise significantly, a silencer with no internal baffles is attached to the M242 cannon. The internal pressures inside the muffler are measured. The near-field overpressures outside the muffler at various polar angles are also measured. A numerical simulation of the flow through the muffler is performed, using Harten's shock-capturing method to solve the Euler equations of ideal compressible flow. The numerical simulation yields a detailed picture of the flow field as displayed by the pressure and Mach contours. Pressure-time curves at selected locations are obtained and compared with experimental data. There is good agreement, except that the numerical simulation generates more vigorous oscillations.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...