Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth and CO2 uptake in the crown of a spruce tree is described and the production processes of this evergreen conifer are compared with those of a deciduous beech. Spruce had 60% lower rates of net photosynthesis per dry weight than beech. But, beech had a 30% shorter growing season and a 84% smaller biomass than spruce. The annual CO2 gain was 40% lower in beech than it was in spruce. An analysis shows the following conclusions for this habitat. (1) The effect of a prolonged growing season is small. The annual CO2 gain of spruce would be reduced only by 9% if the growing season was the same length as for beech. (2) The annual CO2 gain would increase 14% if all needles in spruce were deciduous, because the current year needles have a higher average rate of CO2 uptake than 3-year old and older needles, but a lower average rate than 1- and 2-year old ones. However, the carbon balance of the tree shows that spruce could not afford to produce the existing needle biomass (14 t ha-1) each year. (3) If spruce were to produce the same deciduous foliage biomass during the same growing season as beech then total production by spruce would be reduced 67%. (4) The annual CO2 uptake by evergreen spruce was higher than deciduous beech not because of a long growing season, but because of the longevity of its needles, which during their total life time (an average of 5 years) have a two to three times greater CO2 uptake than a deciduous leaf in one summer season. The relatively small investment in current year needles produces an annually low, but long lasting assimilation of CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Net photosynthesis of Picea abies was measured in a spruce forest in northern Germany with temperature- and humidity-controlled cuvettes in 4 different crown layers on shoots of different ages. These measurments were performed such that temperature and humidity either followed ambient conditions or were kept constant. Annual courses of light-, temperature-, and humidity-related net photosynthesis were determined. Spruce had a remarkably constant rate of CO2 uptake from April to September for 1-year and older needles. Light saturation was achieved at 25 klx. Current year needles had the highest rates of CO2 uptake in early summer, but these rates decreased by autumn. Photosynthetic capacity decreased with needle age and, on a dry weight basis, it was higher in the shade than in the sun crown. The temperature optimum was between 13 and 23° C. Photosynthesis in spruce decreased when air humidity was low. The effect of the natural weather conditions on photosynthetic capacity was determined. The habitat is characterized by a high frequency of low light intensities (75% of total daytime below 20 klx) and cool temperatures (80% of daytime between 9 and 21° C). Low air humidity was only present when light intensities were high. The major limiting factor for production was low light intensities, which reduced photosynthetic capacity in the sun crown to 42% below maximum possible rates. Adverse temperatures reduced CO2 uptake by 28% and large water vapor pressure deficits reduced rates by only 2% compared with maximum possible rates. The limited adaptation to light is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...