Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2022-08-09
    Description: It is well known as the Kelvin-Helmholtz instability (KHI) that an interface of tangential velocity discontinuity is necessarily unstable, regardless of the velocity difference's strength. However, the KHI is suppressed for shallow water flows if the Froude number, defined by the ratio of the velocity difference to the gravity wave's speed, is sufficiently large. In this investigation, we examine the effect of the depth difference of two fluid layers on the KHI. The depth difference enhances instability. Given the Froude number in the instability range, the growth rate sensitively depends on the depth ratio and increases monotonically with the depth ratio difference from unity. The critical value of the Froude number for stabilization varies with the depth ratio and attains the minimum value √8 for equal depth. This behavior is verified by asymptotic analysis.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-24
    Description: The stability of shear layers in fluid flows is a crucial factor in forming vortices and jets and plays a fundamental role in the development of turbulence. Such shear layer instabilities are ubiquitous in natural phenomena, such as atmospheric and oceanic flows, contributing to the formation of weather systems and predicting tsunamis. This study specifically focuses on the stability of a shear layer sandwiched between two semi-infinite layers within a two-dimensional flow. The velocity profile of the shear layer is assumed to be linearly dependent on the vertical coordinate, while the velocity of the other layers remains uniform with differing strengths. The effect of viscosity and surface tension is ignored to simplify the analysis. The shallow water equations are used to analyze the interface stability of the shear layer, and the resulting dispersion relation between wave frequency and other wave characteristics is obtained. This relation incorporates Whittaker functions and their first derivatives and is used to derive appropriate limits corresponding to various physical conditions. Our study thus contributes to a deeper understanding of the stability of shear layers and their implications for natural phenomena.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...