Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Chromosoma 106 (1997), S. 479-484 
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The timing of replication of mouse ribosomal RNA (rRNA) genes was determined in cultured cells by using 5-bromodeoxyuridine labeling of DNA coupled with synchronization. Two subclasses of rRNA genes were characterized that differ in their temporal order of replication during S-phase. Approximately half of the rDNA repeat units replicated primarily during the first half of S-phase and the other 50% preferentially in the second half. This difference in replication timing was consistently observed for the approximately 400 rDNA repeat units of NIH3T3 fibroblasts, but not for plasmid DNA containing fragments of rRNA genes that had been stably transfected into the genome of these cells. The rDNA fragments inserted into these transfection vectors contained the recently mapped origin of bidirectional replication with or without amplification-promoting sequences, or none of the above. Since the plasmid DNA that was integrated into the host cell genome replicated randomly during S-phase we conclude that the integrated plasmid DNA is either replicated from a chromosomal origin in the neighborhood of its integration site or that inserts are replicated from their own origins and the timing of replication is determined by flanking sequences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract We have used nascent strand determination analysis to map start sites of DNA replication in the mouse ribosomal gene cluster in which individual copies of the ribosomal genes are separated by intergenic spacer regions. One origin of bidirectional replication (OBR) was localized within a 3 kb region centered about 1.6 kb apstream of the rDNA transcription start site. At least one additional initiation site is situated near the 3′ end of the transcription unit. Adjacent to the OBR at the transcription start site are located two amplification-promoting sequences, i.e., APS1 and APS2. Nuclease-hypersensitive sites were identified in both the two APSs as well as in the OBR region, thus indicating that these sequences have an altered chromatin structure. In the OBR an intrinsically bent region, a purine-rich element and other prospective initiation zone components are found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. We have used nascent strand determination analysis to map start sites of DNA replication in the mouse ribosomal gene cluster in which individual copies of the ribosomal genes are separated by intergenic spacer regions. One origin of bidirectional replication (OBR) was localized within a 3 kb region centered about 1.6 kb upstream of the rDNA transcription start site. At least one additional initiation site is situated near the 3’ end of the transcription unit. Adjacent to the OBR at the transcription start site are located two amplification-promoting sequences, i.e., APS1 and APS2. Nuclease-hypersensitive sites were identified in both of the two APSs as well as in the OBR region, thus indicating that these sequences have an altered chromatin structure. In the OBR an intrinsically bent region, a purine-rich element and other prospective initiation zone components are found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...