Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 40 (1986), S. 101-107 
    ISSN: 1432-0630
    Keywords: 61.70 ; 66.30 ; 8
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Phosphorus has a considerably less steep concentration profile than arsenic. Therefore phosphorus is considered as an alternative dopand for soft drain concepts in future MOS devices. In-diffusion of phosphorus starting from a high surface concentration generatesexcess point defects which diffuse into the depth of the crystal and lead to a tail in the phosphorus concentration profile by considerably enhancing the phosphorus diffusion in this region. It is also well known that the interface between silicon and a non growing oxide acts as a sink for excess point defects. Since source/drain areas of MOS transistors are surrounded by gate and isolation oxides, the question arises how the resulting excess point defect distribution may influence the lateral and vertical diffusion profile of phosphorus and hence the channel length and the junction depth of the source/drain region in a MOS device. We extended the one-dimensional Fair-Tsai model of phosphorus diffusion into two dimensions and incorporated that the interface between silicon and a gate oxide acts as a sink for excess point defects and modifies their distribution. The appropriate code was implemented in the two-dimensional process simulation program LADIS. Based on this extended model two-dimensional simulations of phosphorus drains have been performed and compared to experimental results and to results from other numerical models. It turns out that the presence of the gate oxide reduces the tail in the phosphorus concentration profile, considerably in lateral direction and less pronounced in vertical direction. Limitations of the model will be discussed in detail.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0630
    Keywords: 73.40—c
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Models for the growth and shrinkage of an interfacial oxide layer and for the stability of the interfacial oxide layer are formulated. Predictions of these models are compared to results obtained by high-resolution transmission electron microscopy. Wafers containing different concentrations of oxygen interstitials are bonded. Depending on the starting concentration of oxygen interstitials in the wafers, the interfacial oxide layer grows or shrinks during long-time annealing at high temperatures. For much shorter annealing times, local disintegration of the oxide layer may occur, which is less severely influenced by the concentration of oxygen interstitials. Rather, it depends on the thickness of the interfacial oxide layer. The influence of rotational misorientation is examined by rotating wafers around their common axes perpendicular to a wafer plane and subsequent bonding. Above a critical angle of about 1–3°, a continuous oxide layer is formed, whereas below this critical angle, sufficiently thin oxide layers disintegrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 56 (1993), S. 249-258 
    ISSN: 1432-0630
    Keywords: 61.70.Bv ; 61.70.Tm ; 66.30.Jt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V Ga 3− , has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V Ga 3− concentration, $$C_{V_{_{Ga} }^{3 - } }^{eq} (n)$$ , has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the $$C_{V_{_{Ga} }^{3 - } }^{eq} (n)$$ value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This $$C_{V_{_{Ga} }^{3 - } }^{eq} (n)$$ property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V Ga 3− has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 64 (1997), S. 533-537 
    ISSN: 1432-0630
    Keywords: PACS: 68.35; 81.40; 85.30
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: $1\overline{1} 02$ ) sapphire in a micro-cleanroom at room temperature under hydrophilic or hydrophobic surface conditions. Subsequent heating up to 500 °C increased the bond energy of the GaAs-on-sapphire (GOS) wafer pair close to the fracture energy of the bulk material. The bond energy was measured as a function of the temperature. Since the thermal expansion coefficients of GaAs and sapphire are close to each other, the bonded wafer pair is stable against thermal treatment and quenching in liquid nitrogen. During heating in different gas atmospheres, macroscopic interface bubbles and microscopic imperfections were formed within the bonding interface, which were analysed by transmission electron microscopy (TEM). These interface bubbles can be prevented by hydrophobic bonding in a hydrogen atmosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 66 (1998), S. 59-67 
    ISSN: 1432-0630
    Keywords: PACS: 61.16; 68.35; 68.55
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0630
    Keywords: PACS: 68.55-a; 77.80-e; 81.15.Fg
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. Thin films of bismuth-layered perovskites such as SrBi2Ta2O9, Bi4Ti3O12, and BaBi4Ti4O15 with preferred orientations were grown by pulsed laser deposition on epitaxial conducting LaNiO3 electrodes on single-crystalline (100) SrTiO3 or on top of epitaxial buffer layers on (100) silicon. A morphology and structure investigation by X-ray diffraction analysis, scanning probe microscopy, and scanning and transmission electron microscopy showed that the films consisted of both c-axis-oriented regions and mixed (110)-, (100)-, and (001)-oriented regions. The regions with mixed orientation featured rectangular as well as equiaxed crystalline grains protruding out of a smooth c-oriented background. A closer examination revealed that the regions with mixed orientation actually consisted of a c-axis-oriented sublayer growing directly on the epitaxial LaNiO3 electrode, on top of which the growth of either (110)-, (100)-, or (001)-oriented grains took place. Macroscopic as well as microscopic measurements of the ferroelectric properties of regions with pure c-orientation and of regions with mixed orientations showed a clear relationship between their ferroelectric properties and their morphology and crystallographic orientation. In the regions with mixed orientation, the films exhibited saturated ferroelectric hysteresis loops with well-defined remnant polarisation Pr and coercive field Ec. The regions having c-axis orientation with a smooth surface morphology in contrast exhibited a linear P-E curve with no hysteretic behaviour for SrBi2Ta2O9 and BaBi4Ti4O15 and a weak ferroelectric behaviour for Bi4Ti3O12. This clearly showed that the ferroelectric properties of bismuth-layered ferroelectric oxides depended on the crystalline orientation of the film and that the observed ferroelectric hysteresis loops in SrBi2Ta2O9 and BaBi4Ti4O15 films were solely due to the (100)- and (110)-oriented grains. The size of the (110)- and (100)-oriented grains being of the order of 100 nm and spontaneous polarisation having been observed and switched in a controlled manner is a demonstration that ferroelectricity can exist in structures of submicrometer size. These results might have a technological impact due to the relevance of bismuth-layered ferroelectric oxides for the fabrication of non-volatile FeRAM memories.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0630
    Keywords: PACS: 77.84.-s; 68.55.-a; 81.15.Fg
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. Epitaxial SrBi2Ta2O9 (SBT) thin films with well-defined (116) orientation have been grown by pulsed laser deposition on Si(100) substrates covered with an yttria-stabilized ZrO2 (YSZ) buffer layer and an epitaxial layer of electrically conductive SrRuO3. Studies on the in-plane crystallographic relations between SrRuO3 and YSZ revealed a rectangle-on-cube epitaxy with respect to the substrate. X-ray diffraction pole figure measurements revealed well-defined orientation relations, viz. SBT(116)∥SrRuO3(110)∥YSZ(100)∥Si(100), SBT[110]∥SrRuO3[001], and SrRuO3[111]∥YSZ[110]∥Si[110].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 3181-3183 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present a technique for the fabrication of materials integration of (100) silicon and (100) gallium arsenide by direct wafer bonding. GaAs wafers 3 in. in diameter were hydrophobically bonded to commercially available 3 in. silicon-on-sapphire wafers at room temperature. After successive annealings in hydrogen and arsenic atmospheres at temperatures up to 850 °C the Si/GaAs interfacial energy was increased by the formation of strong covalent bonds. Due to the difference in the lattice constants of about 4.1%, extra Si lattice planes were observed at the interface. No threading dislocations were introduced into the GaAs. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 150-157 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the effect of Zn indiffusion on enhancing the GaAs/AlAs superlattice (SL) disordering process, which combines recently proposed models for Ga self-diffusion and Zn diffusion in GaAs, is presented. Four coupled partial differential equations describing the process were solved numerically. Satisfactory agreement between the simulated results and experimental data available in the literature is obtained. At a given temperature, the used values for the diffusion coefficient and the thermal equilibrium concentration of the responsible point defect species, the doubly positively charged Ga self-interstitials IGa2+, are a consistent splitting of the known Ga self-diffusion coefficient dominated by IGa2+. Quantitatively, the SL disordering enhancement is mainly due to the Fermi-level effect while an IGa2+ supersaturation also makes a small contribution. Because of p-doping by Zn acceptor atoms, the IGa2+ concentration is increased tremendously via the Fermi-level effect. An IGa2+ supersaturation also develops because the IGa2+ generation rate is higher than its removal rate. The enhanced SL disordering process mainly proceeds under the Ga-rich SL composition conditions. The Zn-indiffusion-enhanced Al-Ga interdiffusion coefficient shows an apparent dependence on the Zns− concentration differing slightly from a quadratic relationship.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 2192-2196 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Formation of SiO2 precipitates in Czochralski Si is associated with a volume expansion of more than 100%. The needed extra volume for precipitate growth to occur is primarily supplied by emission of Si self-interstitials (I) into the Si matrix, in balance with a compressive growth residual strain. During cooling after the anneal, an additional compressive cooling strain component also develops because of the different thermal expansion coefficients of SiO2 and Si. For precipitates grown to a sufficiently large size, the growth residual strain and/or the cooling strain can be further relieved by punching interstitial type prismatic dislocation loops into the Si matrix. Otherwise, only I emission can occur. Up to now, there have been no quantitatively determined strain values, which constitute in a given experiment a measure of the I emission efficiency on the one hand, and a basis for determining whether prismatic punching can also occur on the other. In this study, we have calculated the strain values and obtained a quantitative criterion for prismatic punching to occur. In the order of ∼10−3–10−2, the growth residual strain component values indicate that I emission has attained an efficiency of relieving the precipitate growth strain by ∼90%–99%. Available experimental data on the precipitate size dependence of prismatic dislocation loop punching have been satisfactorily fitted using the obtained strain values and the punching criterion, indicating that these calculated values are in acceptable accuracy ranges.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...