Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0942-0940
    Keywords: Tissue ablation ; laser/tissue interaction ; shortpulsed lasers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The basis for most laser applications in neurosurgery is the conversion of laser light into heat when the incident laser beam is absorbed by the tissue. Irradiation of neural tissue with laser light therefore leads to its thermal damage. However, due to the diffusion of heat energy into the surrounding tissue, often there is thermal damage to neural tissue outside the area of the target volume. These are the characteristics of thermal laser/tissue interaction. In this paper we discuss how we used three different short-pulsed lasers to achieve non-thermal ablation of neural tissue. Three different short-pulsed lasers were used to generate ultrashort laser pulses in the picosecond to femtosecond range. The interaction of such laser pulses with tissue was predicted to be nonthermal. The short-pulsed lasers were used for the ablation of neural tissue using an in vitro calf brain model. The histopathological examination of the lesions revealed that the neural tissue had been removed very precisely without any sign of thermal damage to the surrounding tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0649
    Keywords: 87.50.Hj ; 42.55.Rz ; 87.90.+y
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Plasma-mediated ablations of brain tissue have been performed using picosecond laser pulses obtained from a Nd:YLF oscillator/regenerative amplifier system. The laser pulses had a pulse duration of 35 ps at a wavelength of 1.053 µm. The pulse energy varied from 90 µJ to 550 µJ at a repetition rate of 400 Hz. The energy density at the ablation threshold was measured to be 20 J/cm2. Comparisons have been made to 19 ps laser pulses at 1.68 µm and 2.92 µm from an OPG/OPA system and to microsecond pulse trains at 2.94 µm from a free running Er:YAG laser. Light microscopy and scanning electron microscopy were performed to judge the depth and the quality of the ablated cavities. No thermal damage was induced by either of the picosecond laser systems. The Er:YAG laser, on the other hand, showed 20 µm wide lateral damage zones due to the longer pulse durations and the higher pulse energies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...