Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 689-712 
    ISSN: 0271-2091
    Keywords: Rotating spheres ; Viscous flow ; Incompressible fluid ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The research reported herein involved the study of the transient motion of a system consisting of an incompressible Newtonian fluid in an annulus between two concentric, rotating, rigid spheres. The primary purpose of the research was to study the use of a numerical method for analysing the transient motion that results from the interaction between the fluid in the annulus and the spheres which are started suddenly by the action of prescribed torques. The problems considered in this research included cases where: (a) one or both spheres rotate with prescribed constant angular velocities and (b) one sphere rotates due to the action of an applied constant or impulsive t̰orque.In this research the coupled solid and fluid equations were solved numerically by employing the finite difference technique. With the approach adopted in this research, only the derivatives with respect to spatial variables were approximated with the use of the finite difference formulae. The steady state problem was also solved as a separate problem (for verification purposes), and the results were compared with those obtained from the solution of the transient problem. Newton's algorithm was employed to solve the algebraic equations which resulted from the steady state problem, and the Adams fourth-order predictor-corrector method was employed to solve the ordinary differential equations for the transient problem. Results were obtained for the streamfunction, circumferential function, angular velocity of the spheres and viscous torques acting on the spheres as a function of time for various values of the system dimensionless parameters.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...