Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2021-01-22
    Description: The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-22
    Description: The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-15
    Description: The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders’ decomposition in a generic framework. GCG’s detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders’ framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Branch-and-bound (B&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...