Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 58 (1987), S. 501-508 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A toroidal electrostatic analyzer of a design suitable for space plasma instrumentation has been constructed and tested. Experimental results are compared with second-order ion optical theory and are in good agreement. Verifying the ion optics of the toroid was simplified by use of a position-sensing microchannel-plate detector mounted on a positioning system with three translational degrees of freedom located at the toroid exit. The toroidal analyzer described here is the first optical element in a fully toroidal mass spectrograph intended for analysis of kilovolt magnetospheric plasmas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, we have developed an instrument that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution (M/ΔM(approximately-greater-than)50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment. This also removes the ambiguity between molecular ions and isotopic species of the same mass. A laboratory prototype has been used to demonstrate the feasibility of the principle of operation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 64 (1993), S. 184-190 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A new mass spectrograph for making simultaneous measurements of the mass-angle distributions of charged particles in the energy range up to 30 keV has been tested. The analyzer serially combines two rotationally symmetric poloidal analyzers to achieve a nearly double-focusing image in the radial plane and a 360° field-of-view in the azimuthal direction. Experimental tests have provided information on first- and second-order imaging properties, and have furthermore led to the development of highly effective antiscattering baffles for reducing particle background. The experimental results obtained with this laboratory prototype agree well with the predictions of the semiempirical theory for poloidal analyzers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 61 (1990), S. 3609-3612 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, we have developed an instrument that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution (M/ΔM(approximately-greater-than)50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment. This also removes the ambiguity between molecular ions and isotopic species of the same mass. A laboratory prototype has been used to demonstrate the feasibility of the principle of operation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Giotto ion mass spectrometer (IMS) consists of two independent sensors: the high-energy-range spectrometer (HERS), which is optimized primarily for the study of ion abundances and velocity distributions outside the contact surface (CS); and the high-intensity spectrometer (HIS), which provides ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The science objectives of the Toroidal Imaging Mass-Angle Spectrograph (TIMAS) are to investigate the transfer of solar wind energy and momentum to the magnetosphere, the interaction between the magnetosphere and the ionosphere, the transport processes that distribute plasma and energy throughout the magnetosphere, and the interactions that occur as plasma of different origins and histories mix and interact. In order to meet these objectives the TIMAS instrument measures virtually the full three-dimensional velocity distribution functions of all major magnetospheric ion species with one-half spin period time resolution. The TIMAS is a first-order double focusing (angle and energy), imaging spectrograph that simultaneously measures all mass per charge components from 1 AMU e−1 to greater than 32 AMU e−1 over a nearly 360° by 10° instantaneous field-of-view. Mass per charge is dispersed radially on an annular microchannel plate detector and the azimuthal position on the detector is a map of the instantaneous 360° field of view. With the rotation of the spacecraft, the TIMAS sweeps out very nearly a 4π solid angle image in a half spin period. The energy per charge range from 15 eV e−1 to 32 keV e−1 is covered in 28 non-contiguous steps spaced approximately logarithmically with adjacent steps separated by about 30%. Each energy step is sampled for approximately 20 ms;14 step (odd or even) energy sweeps are completed 16 times per spin. In order to handle the large volume of data within the telemetry limitations the distributions are compressed to varying degrees in angle and energy, log-count compressed and then further compressed by a lossless technique. This data processing task is supported by two SA3300 microprocessors. The voltages (up to 5 kV) for the tandem toroidal electrostatic analyzers and preacceleration sections are supplied from fixed high voltage supplies using optically controlled series-shunt regulators.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...