Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: GTP-binding rab proteins, present in synaptic vesicles and endocrine secretory granules, have been shown to be involved in the control of regulated exocytosis. We found rab3 proteins in immunoblots of diverse areas of the mouse central nervous system (spinal cord, olfactory bulb, hippocampus, cerebellum and neocortex). Immunohistochemical observations at light- and electron-microscopical levels in the hippocampus and other areas revealed rab3 proteins in virtually all synaptic fields and terminals of the areas investigated. In the retina, rab3A immunoreactivity was confined to the inner and outer plexiform layers. Ultrastructural examination revealed that rab3A was present in conventional terminals in the inner plexiform layer and in horizontal cell processes of the outer plexiform layer. In contrast ribbon synapses, which play a key role in transferring information from the photoreceptor cells to the central nervous system, were immunonegative. We also tested whether other proteins of the rab3 family are present in ribbon synapses. However, using an antibody recognizing rab3B and rab3C in addition to rab3A, we found no immunoreactivity in these synapses. Interestingly, we observed also no immunoreactivity for synaptosomal-associated protein 25 (SNAP-25) in ribbon synapses, but conventional synapses and horizontal cell processes were heavily stained. Our data show that the known rab3 and SNAP-25 isoforms, which are components of the secretory apparatus of conventional synapses, are absent from ribbon synapses of the retina. Our observations suggest different mechanisms of transmitter exocytosis in conventional and ribbon terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The closely related synaptic vesicle membrane proteins synaptophysin and synaptoporin are abundant in the hippocampal formation of the adult rat. But the prenatal hippocampal formation contains only synaptophysin, which is first detected at embryonic day 17 (E17) in perikarya and axons of the pyramidal neurons. At E21 synaptophysin immunoreactivity extends into the apical dendrites of these cells and in newly formed terminals contacting these dendrites. The transient presence of synaptophysin in axons and dendrites suggests a functional involvement of synaptophysin in fibre outgrowth of developing pyramidal neurons. Synaptoporin expression parallels the formation of dentate granule cell synaptic contacts with pyramidal neurons: the amount of hippocampal synaptoporin, determined in immunoblots and by synaptoporin immunostaining of developing mossy fibre terminals, increases during the first postnatal week. Moreover, in the adult, synaptoporin is found exclusively in the mossy fibre terminals present in the hilar region of the dentate gyrus and the regio inferior of the cornu ammonis. In contrast, synaptophysin is present in all synaptic fields of the hippocampal formation, including the mossy fibre terminals, where it colocalizes with synaptoporin in the same boutons. Our data indicate that granule neuron terminals differ from all other terminals of the hippocampal formation by the presence of both synaptoporin and synaptophysin. This difference, observed in the earliest synaptic contacts in the postnatal hippocampus and persisting into adult life, suggests distinct functions of synaptoporin in these nerve terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...