Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 8 (1992), S. 298-306 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 17 (1978), S. 482-485 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 18 (1979), S. 740-745 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Investigations into the relationship between sucrose hydrolysis, sorbitol formation and mineral ion concentration during bioethanol formation by Zymomonas mobilis 2716 revealed two distinct phenomena responsible for carbon flow diversion, a “sucrose effect” and a “salt effect”. Neither of the two phenomena affects sucrose hydrolysis, but they divert carbon flow of the fructose monomer leading to its own accumulation, sorbitol or oligosaccharide formation. Sucrose concentrations in excess of 15% (w/v) led to sorbitol formation, the level of which may exceed 2% (w/v) depending upon glucose accumulation during sucrose hydrolysis. Increasing mineral ion concentrations led initially to carbon losses and finally to fructose accumulation instead of sorbitol formation. This carbon loss can be corrected by the addition of invertase, which in turn leads to an increase in sorbitol, fructose and ethanol. Potassium and chloride are the dominant ions responsible for suppression of sorbitol formation and fructose uptake, encouraging oligosaccharide formation. These fructooligosaccharides must be of a type which can be converted to fructose, sorbitol and ethanol through the action of invertase. The requirement of invertase addition to prevent fructooligosaccharide formation is indirect evidence that Z. mobilis 2716 does not produce invertase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 22 (1985), S. 411-415 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Zymomonas mobilis was grown in batch concentrations between 200 and 400 g/l sucrose. The fermentation pattern revealed that the efficiency of sucrose hydrolysis dropped only from 94 to 78.6% whereas the efficiency with which the hydrolyzed products were converted to ethanol decreased from 94 to 43%. The ethanol yields were relatively constant for final concentrations which lay between 80 and 132 g/l. Fermentation times increased to 72 hours at the higher sucrose concentrations. Sorbitol and fructose were identified as the major by-products. Preliminary evidence suggests that the ratio between the two by-products depends on the pH of the culture medium. Results suggest the possibility of processes producing ethanol plus fructose, ethanol plus fructose and sorbitol, or ethanol plus sorbitol in a single-stage batch fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Colony radial growth rates of Rhizopus oligosporus and Aspergillus oryzae were compared under various conditions on agar plates containing cassava starch. Both organisms grew well on cassava starch as their sole source of carbon and energy, although growth was stimulated by the addition of yeast extract and peptone. Neither organism utilized ungelatinized starch effectively. The optimum initial pH for R. oligosporus was 7, although good growth was obtained at pH 5 when ammonium sulfate was partially replaced by urea. A. oryzae grew well over a range of initial pH values from 5 to 8. Growth of R. oligosporus was inhibited by NaCl concentrations above 0.5% (w/v) while A. oryzae was unaffected up to 4% NaCl. The best colony radial growth rate obtained for R. oligosporus was 1.01 mm/h, which was far superior to that obtained for A. oryzae (0.29 mm/h). R. oligosporus was chosen as the more suitable organism for future studies of the protein enrichment of cassava by solid-state fermentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 22 (1985), S. 405-410 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A new single-batch fermentation process for the commercial production of ethanol from refined sucrose, raw sugar, sugar cane juice and sugar cane syrup has been developed using a highly adapted and efficient strain of Zymomonas mobilis. The process gives a 94–98% sucrose hydrolysis efficiency and a 95–98% ethanol conversion efficiency. Within 24–30 h, 200 g/l sucrose is converted to produce 95.5 g/l ethanol. Reinoculation is carried out from the fermented broth without the need for centrifugation or membrane filtration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 5 (1983), S. 423-428 
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary In an effort to establish the reasons for the limitations in the final ethanol concentration of Zymomonas mobilis fermentation, the effects of CO2 and ethanol on the fermentation were investigated using continuous and fed-batch cultivation systems. The nucleation and stripping out of CO2 from the fermenter using diatomaceous earth or nitrogen gas or both exhibited a profound effect on the glucose uptake rate during the early stages of fed-batch fermentation, but did not improve final ethanol yields. The addition of ethanol together with above mentioned experiments confirmed conclusively that ethanol inhibition is responsible for the final ethanol concentration obtainable during Zymomonas mobilis fermentation. The final concentration lies between 90 and 110 gl−1 or approximately 12–15% (v/v) ethanol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 6 (1984), S. 471-476 
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Evidence is presented that adaptation of yeast cells to ethanol results in a reduced loss of cell viability induced by exposure to that agent. In line with earlier work, an exponential model is shown to apply when the concentration of ethanol exceeds a critical value, beyond which cell growth cannot occur. Such an exponential model is consistent with the absolute theory of reaction rates. Adaptation of yeast cells to 7% w/v ethanol lowers the specific rate of cell death at various ethanol concentrations by a factor of some 40 fold compared to a non-adapted culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 7 (1985), S. 223-228 
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The effects of ethanol on the growth rates of twoSaccharomyces yeast strains were measured during normal batch fermentative growth and compared with those measured by initial rate studies. In the light of previous work, which has highlighted the loss of cell replicative ability caused by ethanol, the results imply that the observed reduction in growth rate reflects a mixture of true inhibition and replicative inactivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...