Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 115 (1993), S. 2604-2612 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 30 (1987), S. 1121-1126 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 3933-3937 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Monte Carlo calculations have been carried out to study the interfacial properties of liquid water, using the Matsuoka–Clementi–Yoshimine (MCY) potential for the water–water interaction. The surface tension calculated at 298 K is 23.7±3.4 dyn/cm, to be compared with the experimental value of 72 dyn/cm. The interfacial 10–90 thickness is 4.70 A(ring), with the dipoles of the water molecules near the liquid phase pointing slightly towards the liquid phase and those near the gas phase pointing towards the gas phase. The interfacial water molecules are found to be more restricted in their rotation, as evidenced by the smaller root-mean-squared fluctuations of the dipole directions. The Volta potential difference across the interface arising from the permanent dipoles is estimated to be 0.024 V. A new and efficient method is proposed to calculated the surface excess energy. The excess energy calculated for the MCY water is 119 erg/cm2, to be compared with the experimental value of 120 erg/cm2. From the calculated surface excess energy, the temperature variation of the surface tension, or the surface entropy, for the MCY water is estimated to be −0.32 dyn/(cm2 K). This temperature variation is confirmed by another Monte Carlo study at 310 K to within the calculated uncertainty.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 10 (1989), S. 136-136 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 8 (1987), S. 84-93 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The effect of polarization functions for ab initio molecular orbital calculations at the 3-21G* level has been studied for disiloxane. Calculated molecular geometry, dipole moment, and the linearization barrier variation were analyzed for different uncontracted polarization functions. It was concluded that variation of the polarization function on oxygen has only a minor influence on the molecular properties of disiloxane, but its presence is required to obtain a bent geometry for the disiloxane bond. The calculated molecular properties of disiloxane are greatly influenced when the polarization function on silicon is varied. Two different values (0.3 and 0.9) for the exponent of the silicon polarization function provide results comparable to the experimental values for disiloxane. The only significant differences between the results obtained from ab initio calculations using the two polarization functions are in net atomic charges. The uncontracted polarization function of silicon with a value of 0.3 for its exponent is transferable to other organosilicon compounds. Calculated molecular geometries of flexible or rigid structures are in very good agreement with the experimental values.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 11 (1990), S. 493-510 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new approach based on computation of the molecular surface interactions (MSI) to estimate several physical properties of pure organic substances is described. MSI are derived from molecular structural data and consist of total molecular surface area, electrostatic molecular surface interactions, and a hydrogen bonding term. This new approach estimates the critical temperature and the molar critical volume of pure organic substances with molecular weights in the range of 40-500 a.u‥ In addition, the following properties can be calculated: the critical pressure, the boiling temperature, the molar volume in liquid state at normal pressure and temperature. The method can be used to predict physical properties of compounds having flexible or rigid, symmetric or asymmetric, polar or nonpolar molecular structures, and compounds with or without hydrogen bonding groups.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 9 (1988), S. 25-39 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Molecular structures of 26 organosilicon compounds have been optimized using ab initio calculations at the 3-21G* (modified) level. From these optimized structures, the internal coordinates have been deformed and the variation of the total molecular energy has been studied. Parameters for stretching and bending deformations are reported herein. The bending potential for the Si—O—Si bond which has an unusual flexibility is also included. Nonbonding interactions are described in terms of steric and electrostatic potentials. For systems which do not include bond resonance effects, torsional behavior is well described by steric potentials with van der Waals radii 20% larger than the previous values and simple electrostatic potential (monopole-monopole) with net atomic charges obtained from ab initio or Extended Huckel Theory calculations. The nonbonding potentials, as defined in this study, have an advantage in that they allow for the computation of torsional barriers without torsional potentials, in the case of single bonds where no additional electronic effects interfere. As an example, it is shown that no torsional potentials are necessary to estimate the torsional barriers in the case of ethane. The newly defined potentials are used to study the torsional barrier in hexamethyldisiloxane and the conformation of octamethylcyclotetrasiloxane (D4). The most stable calculated conformation of D4, coincides with the experimentally determined structure. This study shows that the most stable conformation is determined by the steric repulsion of methyl groups.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...