Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: electrogenic pumps ; equivalent circuit ; inductive behavior ; inactive state ; nonsteady-state kinetic models ; voltage-dependent capacitance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The temporal behavior of current through a biological membrane can display more than one time constant. This study represents the reaction kinetic analysis of the nonsteady-state behavior of a class of membrane transporters with one voltage-sensitive reaction step, one dominant (large) time constant, but arbitrary reaction scheme of the voltage-insensitive part of transporter. This class of transporters which shows uniform behavior under steady-state conditions splits into two fundamentally different subclasses, when nonsteady-state behavior is examined: Subclass (Model) A: the slow reaction controls the redistribution of states within the reaction cycle upon an (electrical) perturbation; model B: this redistribution is fast but the transporting cycle can slowly equilibrate with an inactive, “lazy” state. The electrical appearance of model A in a membrane requires specific features of the transporter in the membrane: high densities (10−8 mol m−2), low turnover rates (103 sec−1) and high stoichiometry (z〉1) of transported charges per cycle. The kinetics of both models can formally be described by an equivalent circuit with a steady-state slope conductance (G 0) shunted by a (transporter specific) capacitance (G t ) and a conductance (C t ) in series. The voltage dependence ofC t and ofG t can be used to identify model A or model B. In the range of maximumG 0 in the steady-state current-voltage curve,C t in model A displays a maximum (which may characteristically split into two maxima) and vanishes for larger voltage displacements.C t can be used for the determination of transporter densities in the membrane. In contrast to model A, the appearance of model B in the nonsteady-state behavior of a membrane does not depend on high densities, low turnover rates and high stoichiometry; it can, therefore, be found also in membranes with sparsely distributed, rapidly transporting channels of any stoichiometry. Particular to model B is a change in the signs ofC t andG t at the reversal potential of the steady-state current-voltage relationship. This implies switching from capacitive to inductive behavior (under vanishing amplitudes). Also in model B, the nonsteady-state effects disappear for large voltage displacements from the reversal potential. Model B is expected to occur preferably in transporters subject to metabolic control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 159 (1997), S. 169 -178 
    ISSN: 1432-1424
    Keywords: Key words: Calcium — Channel — Current-voltage curves — Selectivity filter — Rate theory — Kinetic model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Current-voltage relationships of a cation channel in the tonoplast of Beta vulgaris, as recorded in solutions with different activities of Ca2+ and K+ (from Johannes & Sanders 1995, J. Membrane Biol. 146:211–224), have been reevaluated for Ca2+/K+ selectivity. Since conversion of reversal voltages to permeability ratios by constant field equations is expected to fail because different ions do not move independently through a channel, the data have been analyzed with kinetic channel models instead. Since recent structural information on K+ channels show one short and predominant constriction, selectivity models with only one binding site are assumed here to reflect this region kinetically. The rigid-pore model with a main binding site between two energy barriers (nine free parameters) had intrinsic problems to describe the observed current-saturation at large (negative) voltages. The alternative, dynamic-pore model uses a selectivity filter in which the binding site alternates its orientation (empty, or occupied by either Ca2+ or K+) between the cytoplasmic side and the luminal side within a fraction of the electrical distance and in a rate-limiting fashion. Fits with this model describe the data well. The fits yield about a 10% electrical distance of the selectivity filter, located about 5% more cytoplasmic than the electrical center. For K+ translocation, reorientation of the unoccupied binding site (with a preference of about 6:5 to face the lumenal side) is rate limiting. For Ca2+, the results show high affinity to the binding site and low translocation rates (〈1% of the K+ translocation rate). With the fitted model Ca2+ entry through the open channel has been calculated for physiological conditions. The model predicts a unitary open channel current of about 100 fA which is insensitive to cytoplasmic Ca2+ concentrations (between 0.1 and 1 μm) and which shows little sensitivity to the voltage across the tonoplast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 62 (1981), S. 139-148 
    ISSN: 1432-1424
    Keywords: Acetabularia ; Cl− flux ; current-voltage relationships ; electrogenic pump ; ion-transport model ; nonlinear kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The current-voltage relationship of carrier-mediated, passive and active ion transport systems with one charge-carrying pathway can exactly be described by a simple reaction kinetic model. This model consists of two carrier states (one inside, one outside) and two pairs (forwards and backwards) of rate constants: a voltage-dependent one, describing the transport of charge and a voltage-insensitive one, summarizing all the other (voltage-independent) reactions. For the electrogenic Cl− pump inAcetabularia these four rate constants have been determined from electrical measurements of the current-voltage relationship of the pump (Gradmann, Hansen & Slayman, 1981;in: Electrogenic Ion Pumps, Academic Press, New York). The unidirectional Cl− efflux through the pump can also be calculated by the availiable reaction kinetic parameters.36Cl− efflux experiments on singleAcetabularia cells with simultaneous electrical stimulation (action potentials) and recording, demonstrate the unidirectional Cl− efflux to depend on the membrane potential. After subtraction of an efflux portion which bypasses the pump, agreement is found between the measured flux-voltage relationship and the theoretical one as obtained from the reaction kinetic model and its parameters from the electrical data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 165 (1998), S. 19-35 
    ISSN: 1432-1424
    Keywords: Key words: Channel interaction — Dwell-time histograms — Markov process — Rate constants — Target-fit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Exact algorithms for the kinetic analysis of multichannel patch-clamp records require hours to days for a single record. Thus, it may be reasonable to use a fast but less accurate method for the analysis of all data sets and to use the results for a reanalysis of some selected records with more sophisticated approaches. For the first run, the tools of single-channel analysis were used for the evaluation of the single-channel rate constants from multichannel dwell-time histograms. This could be achieved by presenting an ensemble of single channels by a ``macrochannel'' comprising all possible states of the ensemble of channels. Equations for the calculations of the elements of the macrochannel transition matrix and for the steady-state concentrations for individual states are given. Simulations of multichannel records with 1 to 8 channels with two closed and one open states and with 2 channels with two open and two closed states were done in order to investigate under which conditions the one-dimensional dwell-time analysis itself already provides reliable results. Distributions of the evaluated single-channel rate constants show that a bias of the estimations of the single-channel rate constants of 10 to 20% has to be accepted. The comparison of simulations with signal-to-noise ratios of SNR = 1 or SNR = 25 demonstrates that the major problem is not the convergence of the fitting routine, but failures of the level detector algorithm which creates the dwell-times distributions from noisy time series. The macrochannel presentation allows the incorporation of constraints like channel interaction. The evaluation of simulated 4-channel records in which the rate-constant of opening increased by 20% per already open channel could reveal the interaction factor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 6 (1980), S. 75-75 
    ISSN: 1432-1017
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Bioenergetics 934 (1988), S. 156-159 
    ISSN: 0005-2728
    Keywords: (Intact leaf) ; Light intensity ; Spillover changes ; State transition
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    BBA - Protein Structure 295 (1973), S. 447-456 
    ISSN: 0005-2795
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    BBA - Protein Structure 295 (1973), S. 438-446 
    ISSN: 0005-2795
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    BBA - Protein Structure 336 (1974), S. 30-36 
    ISSN: 0005-2795
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    BBA - Protein Structure 371 (1974), S. 451-461 
    ISSN: 0005-2795
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...