Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 170 (1998), S. 442-450 
    ISSN: 1432-072X
    Keywords: Key words Tissierella creatinophila ; Sarcosine ; reductase ; Protein C ; Protein A ; Protein Bsarcosine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sarcosine reductase is the only reductase system present in Tissierella creatinophila when grown on creatinine plus formate. The acetyl-phosphate-forming component protein C was purified to homogeneity. SDS-PAGE of the purified protein revealed two protein bands with apparent mol. masses of 62 and 50 kDa. The N-terminal amino acid sequence of the two subunits was determined. Antibodies raised against each of the subunits of protein C from Eubacterium acidaminophilum cross-reacted with the corresponding protein present in T. creatinophila, Clostridium litorale and Clostridium sporogenes. The arsenate-dependent hydrolysis of acetyl phosphate catalyzed by protein C was partly inhibited by antibodies directed against the large subunit. Antibodies raised against the small subunit were twice as effective, which indicates that this subunit is the primary site of acetyl transfer from acetyl phosphate. The protein A component of the sarcosine reductase of T. creatinophila was purified to homogeneity by cochromatography with thioredoxin reductase on DEAE-Sephacel, hydroxylapatite, Q-Sepharose, and Sephacryl 100-HR. Protein A had an apparent mol. mass of 21 kDa. Its N-terminal amino acid sequence showed high similarities to that of other proteins A. Initial steps for the purification and preliminary characterization of the sarcosine-specific, substrate-binding protein Bsarcosine component of T. creatinophila indicated the involvement of a 50-kDa protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Synechococcus sp. ; Nitrogen fixation ; Photosynthetic oxygen evolution ; Light-dark cycle ; Light-response curve
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...