Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 42 (2004), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Ground water validation is one of the most challenging issues facing modelers and hydrogeologists. Increased complexity in ground water models has created a gap between model predictions and the ability to validate or build confidence in predictions. Specific procedures and tests that can be easily adapted and applied to determine the validity of site-specific ground water models do not exist. This is true for both deterministic and stochastic models, with stochastic models posing the more difficult validation problem. The objective of this paper is to propose a general validation approach that addresses important issues recognized in previous validation studies, conferences, and symposia. The proposed method links the processes for building, calibrating, evaluating, and validating models in an iterative loop.The approach focuses on using collected validation data to reduce uncertainty in the model and narrow the range of possible outcomes. This method is designed for stochastic numerical models utilizing Monte Carlo simulation approaches, but it can be easily adapted for deterministic models. The proposed methodology relies on the premise that absolute validity is not theoretically possible, nor is it a regulatory requirement. Rather, the proposed methodology highlights the importance of testing various aspects of the model and using diverse statistical tools for rigorous checking and confidence building in the model and its predictions. It is this confidence that will encourage regulators and the public to accept decisions based on the model predictions. This validation approach will be applied to a model, described in this paper, dealing with an underground nuclear test site in rural Nevada.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 42 (2004), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Many sites of ground water contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This complexity has created a need for tools and approaches that can build confidence in model predictions and provide evidence that these predictions are sufficient for decision making. Confidence building is a long-term, iterative process and the author believes that this process should be termed model validation. Model validation is a process, not an end result. That is, the process of model validation cannot ensure acceptable prediction or quality of the model. Rather, it provides an important safeguard against faulty models or inadequately developed and tested models. If model results become the basis for decision making, then the validation process provides evidence that the model is valid for making decisions (not necessarily a true representation of reality). Validation, verification, and confirmation are concepts associated with ground water numerical models that not only do not represent established and generally accepted practices, but there is not even widespread agreement on the meaning of the terms as applied to models. This paper presents a review of model validation studies that pertain to ground water flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general and focuses on site-specific, predictive ground water models used for making decisions regarding remediation activities and site closure. The aim is to provide a reasonable starting point for hydrogeologists facing model validation for ground water systems, thus saving a significant amount of time, effort, and cost. This review is also aimed at reviving the issue of model validation in the hydrogeologic community and stimulating the thinking of researchers and practitioners to develop practical and efficient tools for evaluating and refining ground water predictive models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 37 (1999), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and ingrowth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water resources management 8 (1994), S. 265-284 
    ISSN: 1573-1650
    Keywords: Groundwater ; pollution ; finite difference method ; dispersion ; density dependent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: Abstract A two-dimensional cross-section finite difference model is presented to simulate density dependent leachate migration in leaky aquifers. Unlike existing models, a new approach is adopted to couple the groundwater-flow equation and the hydrodynamic dispersion equation with the elimination of the intermediate step of calculating velocities. The concept of the reference density is employed, permitting increased accuracy (over pressure-based models) in the representation of the transport process. The model is then used to study the effect of several hydraulic and transport parameters on the flow pattern and plume migration which are found to be very sensitive to most of these parameters. Equiconcentration and equipotential lines are overlapped to provide a better understanding of the coupling effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...