Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neurons undergo complex morphological changes during differentiation and in cases of plasticity. A major determinant of cell morphology is the actin cytoskeleton, which in neurons is comprised of two actin isoforms, non-muscle γ- and β-actin. To better understand their respective roles during differentiation and plasticity, their cellular and subcellular localization was examined in developing and adult cerebellar cortex. It was observed that γ-actin is expressed at a constant level throughout development, while the level of β-actin expression rapidly decreases with age. At the light microscopic level, γ-actin staining is ubiquitous and the only developmental change observed is a relative reduction of its concentration in cell bodies and white matter. In contrast, β-actin staining almost completely disappears from the cytoplasm of cell bodies, primary dendrites and axons. In young cerebellar cultures, γ-actin is found in the cell body, neurites and growth cones, while β-actin is mainly found in growth cones, as previously reported in other primary neuronal culture systems [Kaech et al. (1997), J. Neuroscience, 17, 9565–9572; Bassell et al. (1998), J. Neuroscience, 18, 251–265]. Electron microscopy of post-embedding immunogold-labelled tissue confirms the widespread distribution of γ-actin, and also reveals an increased concentration of γ-actin in dendritic spines in the adult. During development, β-actin accumulation is observed in actively growing structures, e.g. growth cones, filopodia, cell bodies and axonal tracts. In the adult cerebellar cortex, β-actin is preferentially found in dendritic spines, structures which are known to retain their capacity for morphological modifications in the adult brain. This differential subcellular localization and developmental regulation of the two actin isoforms point to their different roles in neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Publishing Ltd/Inc.
    Wound repair and regeneration 13 (2005), S. 0 
    ISSN: 1524-475X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It has been known for many years that low levels of laser or noncoherent light (LLLT) accelerate some phases of wound healing. LLLT can stimulate fibroblast and keratinocyte proliferation and migration. It is thought to work via light absorption by mitochondrial cytochromes, increase in reactive oxygen species and consequent gene transcription. However, despite many reports about the positive effects of LLLT on wound healing, its use remains controversial. Our laboratory has developed a model of a full thickness excisional wound in mice that allows quantitative and reproducible light dose healing response curves to be generated. We have found a biphasic dose response curve with a maximum positive effect at 2 J/cm2 of 635-nm light and successively lower beneficial effects from 3–25 J/cm2, the effect is diminished at doses below 2 J/cm2 and gradually reaches control healing levels. At light doses above 25 J/cm2 healing is actually worse than controls. Although analysis of action spectra revealed the most effective light to be 635 nm, dose response curves are likely to be of similar shape for different wavelengths of light but at different absolute fluences. We found no difference between filtered 635 ± 15-nm light from a lamp and 633-nm HeNe laser. Light alone (or a combination with other agents such as photosensitive dyes or matrix degrading enzymes) could be used for stimulation of wound healing. Our future work will be focused on understanding the mechanisms underlying effects of light on wound healing processes. We propose to examine various knockout and overexpressing mice to determine the precise mechanisms operating and to study mouse models of impaired wound healing to more closely define which patients might most benefit from LLLT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 401 (1982), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Experimental data of the radial incorporation of labeled cholesterol [14C-4] into the artery wall is regressed against a mathematical model that predicts macromolecular transport in this biological system. Data is obtained using excised canine carotid arteries that are perfusedin vitro under pulsatile hemodynamic conditions for 2 hr. Vessels are exposed to either normotensive hemodynamics, hypertensive hemodynamics, or simulations in which the rate of flow or vessel compliance is deliberately altered. Several arteries are studied under normotensive conditions following balloon catheter deendothelialization. Transmural concentration profiles of [14C-4] activity are determined by microcryotomy of longitudinal sections of perfused vessels. Nonlinear Marquardt regression on 12 experimental cases yields parameter estimates of effective diffusivity,D and solute filtration velocity,V. Results of this experimental investigation support our hypothesis that hemodynamics and the endothelial lining influence wall flux in intact vessels. Exposure to altered (vs normotensive) hemodynamics is associated with increased incorporation of labeled cholesterol. A similar observation is made for deendothelialized vessels (e.g. a greater accumulation of label and a rise in convective flux). Based upon our companion measurements of vessel wall forces and endothelial cellular morphology accompanying hemodynamic simulations, we suggest that hemodynamically induced alterations to endothelial structures lead to the increased permeability, convection and incorporation that we observe in this work.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 5 (1984), S. 697-709 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary While the migration of capillary endothelial cells is believed central to the process of new blood vessel developmentin vivo, the biochemical basis for endothelial motility is unknown. Herein, we demonstrate that retina-derived growth factor (RDGF), a mitogen for endothelial cells (EC), stimulates the migration of microvascular endotheliumin vitro. The addition of RDGF directly to the culture medium causes an increase in the random movement (chemokinesis) of the EC as measured by the phagokinetic assay. Release of the factor as a gradient results in a stimulation of the directed migration (chemotaxis) of the microvascular EC. This increased EC migration is associated with a shift in morphology of the stimulated cells from a rounded to a more polarized shape. Concomitant with the RDGF-stimulated migration is a dramatic decrease in stress fibre staining visualized by immunofluorescence microscopy using affinity-purified antibodies to actin and myosin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 14 (1989), S. 527-543 
    ISSN: 0886-1544
    Keywords: immunofluorescence ; video-enhanced contrast microscopy ; protrusions ; lamellipodia ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The formation of lamellipodia in migrating cells involves dynamic processes that occur in a cyclic manner as the leading edge of a cell slowly advances. We used video-enhanced contrast microscopy (VEC) to monitor the motile behavior of cells to classify protrusions into the temporal stages of initial and established protrusions (Fisher et al.: Cell Motility and the Cytoskeleton 11:235-247, 1988), and to monitor the fixation of cells. Multiple parameter fluorescence imaging methods (DeBiasio et al.: Journal of Cell Biology 105:1613-1622, 1987; Waggoner et al.: Methods in Cell Biology, Vol. 30, Part B, pp. 449-478, 1989) were then used to determine and to map accurately the distributions of actin, myosin and microtubules in specific types of protrusions. Initial protrustions exhibited no substructure as evidenced by VEC and actin was diffusely arranged, while myosin and microtubules were absent. Newly established protrusions contained diffuse actin as well as actin in microspikes. There was a delay in the appearance of myosin into established protrusions relative to the presence of actin. Microtubules were found in established protrusions after myosin was detected, and they were oriented parallel to the direction of migration. Actin and myosin were also localized in fibers transverse to the direction of migration at the base of initial and established protrusions. Image analysis was used to quantify the orientation of actin fibers relative to the leading edge of motile cells. The combined use of VEC, multiple parameter immunofluorescence, and image analysis should have a major impact on defining complex relationships within cells.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 155 (1993), S. 385-393 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We compared the effects of endothelial-synthesized matrix and purified matrix molecules on pericyte (PC) and aortic smooth muscle cell (SMC) growth, heparin sensitivity, and contractile phenotype in vitro. When PC are plated on endothelial-synthesized (EC) matrix, cell number is, on average, 3.1-fold higher than identical populations grown on plastic. Under the same conditions, SMC proliferation is stimulated 1.6-fold. Purified matrix molecules, such as collagen type IV (COLL) or fibronectin (FN), both major components of the EC matrix, stimulate PC/SMC growth 1.2-1.7-fold. Heparin (100 μg/ml), which inhibits the growth of early passage SMC by 60%, inhibits PC growth ∼50%, when cells were plated on plastic. However, PC plated on EC matrix in the presence of heparin (100 μg/ml) grow as well as parallel cultures grown on plastic (in the absence of heparin). Concomitant with matrix-stimulated proliferation, we observed a marked reduction in PC containing alpha vascular smooth muscle actin (αVSMA), as seen by immunofluorescence using affinity-purified antibodies (173/615 positive pericytes on DOC matrix (28%) vs. 221/285 (77%) positive on glass). SMC respond similarly. Whereas αVSMA protein is markedly altered when PC and SMC are cultured on EC matrix, similar reductions in mRNA are not observed. However, Northern blotting does reveal that PC contain 17-30 times the steady-state levels of αVSMA mRNA compared to SMC. When SMC and PC cultures on plastic are treated with heparin, the steady-state levels of vascular smooth muscle actin mRNA increase 5 and 1.5 fold, respectively. Similarly, heparin treatment of PC grown on plastic induces a 1.8 fold increase in nonmuscle actin mRNA. These heparin-induced alterations in isoactin mRNA levels are not seen when PC are cultured on EC matrix. We also observed reductions in αVSMA and β actin mRNA levels when PC are plated on FN, where they maintain a ratio of 13:1 (α:β). Similar ratios are found in SMC present in rat and bovine aortae in vivo. These steady-state isoactin mRNA ratios are slightly different from those seen in cultured PC (8-10:1; α:β). These results suggest that selective synthesis and remodelling of the endothelial basal lamina may signal alterations in pericyte growth and contractile phenotype during normal vascular morphogenesis, angiogenesis, or during the microvascular remodelling that accompanies hypertensive onset. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 141 (1989), S. 653-659 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Endothelial cell (EC) motility may contribute to the regulation of microvascular perfusion and/or paracellular permeability. The experiments reported herein demonstrate that bovine pulmonary microvessel EC can reversibly deform a silicone substrate in response to agents known to contract and relax smooth muscle cells. Contracting pulmonary microvessel EC exerted a tension that created wrinkles in the underlying deformable substrate. Relaxation and loss of tension were revealed by the disappearance of these wrinkles without loss of cell adhesion to the substratum. Angiotensin II (Ang II) and bradykinin stimulated pulmonary microvessel EC to contract within 3 to 8 min in a Ca2+-dependent fashion. The peak of contraction at 10 to 20 min was followed by relaxation. Forskolin and sodium nitroprusside (SNP) initiated relaxation of the microvessel EC within 3 to 10 min respectively. Relaxed EC contracted following the addition of Ang II, also within 3 min. Dibutyryl cAMP, dibutyryl cGMP, and the photoactivated internalized “caged” cAMP and cGMP promoted EC relaxation in a manner similar to forskolin and SNP. Increases in the intracellular concentration of inositol triphosphate (IP3) with the photoactivated IP3 complex promoted EC contraction in 2 min with a peak at 7 min. The contraction was followed by relaxation, which occurred at 20-25 min. Neither bovine pulmonary artery nor retinal microvessel EC, used as controls, contracted under these experimental conditions. One could speculate that this unique contractile property of pulmonary microvessel EC as observed in vitro may play a regulatory role in vivo, in local perfusion and/or in intercellular gap regulation.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...