Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: Key words: Na/Pi-cotransporter — PTH — Endocytosis — Tyrosine-based signals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. The rat renal type II Na/Pi-cotransporter (NaPi2), which is regulated by mechanisms involving endocytosis and lysosomal degradation, contains two sequences that show high homology with two tyrosine (Y)-based consensus motifs previously reported to be involved in such intracellular trafficking: GY402FAM matching the consensus sequence GYXXZ, and Y509RWF matching the motif YXXO. Mutations of any of these two Y nearly abolished the NaPi2 mediated 32P i -uptake after cRNA-injection into oocytes. The mechanisms underlying these defects are however different. Mutation of the Y402 results in a lack of glycosylation and reduced surface expression of the cotransporter, that are specific for the Y402 mutation since substitution of the neighboring F403 did not have any effect. The inhibitory effect of the Y509 mutation is related to a functional inactivation of the protein expressed in the plasma membrane; mutation of the neighboring R510 also led to a decrease in the cotransporter activity. Pharmacological activation of the protein kinase C cascade by DOG induced the retrieval of both wild-type (WT) as well as Y509 cotransporters from the oocyte plasma membrane. These data suggest that the Y402 is important for the surface expression whereas Y509 for the function of the type II Na/P i -cotransporter expressed in oocytes. Y509 seems not to be involved in the membrane retrieval of the cotransporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Key words: Na+/Pi cotransporter — Proximal tubule — Voltage clamp — Steady-state — Presteady-state —Xenopus laevis oocyte expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract: The two electrode voltage clamp technique was used to investigate the steady-state and presteady-state kinetic properties of the type II Na+/P i cotransporter NaPi-5, cloned from the kidney of winter flounder (Pseudopleuronectes americanus) and expressed in Xenopus laevis oocytes. Steady-state P i -induced currents had a voltage-independent apparent K m for P i of 0.03 mm and a Hill coefficient of 1.0 at neutral pH, when superfusing with 96 mm Na+. The apparent K m for Na+ at 1 mm P i was strongly voltage dependent (increasing from 32 mm at −70 mV to 77 mm at −30 mV) and the Hill coefficient was between 1 and 2, indicating cooperative binding of more than one Na+ ion. The maximum steady-state current was pH dependent, diminishing by 50% or more for a change from pH 7.8 to pH 6.3. Voltage jumps elicited presteady-state relaxations in the presence of 96 mm Na+ which were suppressed at saturating P i (1 mm). Relaxations were absent in non-injected oocytes. Charge was balanced for equal positive and negative steps, saturated at extremes of potential and reversed at the holding potential. Fitting the charge transfer to a Boltzmann relationship typically gave a midpoint voltage (V 0.5) close to zero and an apparent valency of approximately 0.6. The maximum steady-state transport rate correlated linearly with the maximum P i -suppressed charge movement, indicating that the relaxations were NaPi-5-specific. The apparent transporter turnover was estimated as 35 sec−1. The voltage dependence of the relaxations was P i -independent, whereas changes in Na+ shifted V 0.5 to −60 mV at 25 mm Na+. Protons suppressed relaxations but contributed to no detectable charge movement in zero external Na+. The voltage dependent presteady-state behavior of NaPi-5 could be described by a 3 state model in which the partial reactions involving reorientation of the unloaded carrier and binding of Na+ contribute to transmembrane charge movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 1189 (1994), S. 109-111 
    ISSN: 0005-2736
    Keywords: ATPase ; Beta2 subunit isozyme ; Charon BS vector ; Na^+/K^+- ; Retina cDNA library ; cDNA library
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 130 (1985), S. 1066-1071 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 437 (1999), S. 972-978 
    ISSN: 1432-2013
    Keywords: Key words FLAG ; Phosphate ; Sodium phosphate cotransport ; Topology ; Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The rat type II sodium/phosphate cotransporter (NaPi-2) is a 85- to 90-kDa glycosylated protein located at the proximal tubular brush border membrane. Hydropathy predictions suggest eight transmembrane domains (sTM) with a large glycosylated loop between sTM 3 and sTM 4. We have studied the membrane topology of NaPi-2 expressed in oocytes. A 33-amino-acid fragment containing the FLAG epitope was inserted into seven loops connecting the sTMs and into the NH2- and COOH-ends of the protein. FLAG-antibody binding suggested that the loops connecting sTM 1 and sTM 2 as well as sTM 3 and sTM 4 are located extracellularly. Based on the lack of FLAG-antibody binding we suggest intracellular locations for the NH2- and COOH-termini and the region connecting sTM 4 and sTM 5. Immunoprecipitation studies of in vitro translated protein also suggest that the NH2-terminus is sited extracellularly. In immunohistochemical studies with NaPi-2-transfected MDCK cells, an interaction with NH2- and COOH- terminal antipeptide antibodies could only be obtained after membrane permeabilization. The presented data are an experimental documentation of the intracellular location of the NH2- and COOH-termini, and of the extracellular location of extracellular loops 1 and 2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...