Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The t(8;21) is one of the most frequent chromosomal translocations associated with acute leukemia. This translocation creates a fusion protein consisting of the acute myeloid leukemia-1 transcription factor and the eight-twenty-one corepressor (AML1–ETO), which represses transcription through ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature medicine 10 (2004), S. 238-239 
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Acute myeloid leukemia-1 (AML-1, encoded by the runt-related X1 gene, RUNX1) is perhaps the most frequent target of chromosomal translocations in acute leukemia. The translocations create fusion proteins that repress AML-1-regulated genes. The transcription factor AML-1 is a putative tumor ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular biology reports 24 (1997), S. 157-168 
    ISSN: 1573-4978
    Keywords: AML ; hematopoiesis ; myeloid leukemias ; myelopoiesis ; transcription factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The coordinated production of all blood cells from a common stem cell is a highly regulated process involving successive stages of commitment and differentiation. From analyses of mice deficient in transcription factor genes and from the characterizations of chromosome breakpoints in human leukemias, it has become evident that transcription factors are important regulators of hematopoiesis. During myelopoiesis, which includes the development of granulocytic and monocytic lineages, transcription factors from several families are active, including AML1/CBFβ, C/EBP, Ets, c-Myb, HOX, and MZF-1. Few of these factors are expressed exclusively in myeloid cells; instead it appears that they cooperatively regulate transcription of myeloid-specific genes. Here we discuss recent advances in transcriptional regulation during myelopoiesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 194-202 
    ISSN: 0730-2312
    Keywords: acute leukemias ; hematopoietic cells ; histone deacetylase complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Accumulating evidence points to a connection between cancer and transcriptional control by histone acetylation and deacetylation. This is particularly true with regard to the acute leukemias, many of which are caused by fusion proteins that have been created by chromosomal translocations. Genetic rearrangements that disrupt the retinoic acid receptor-α and acute myeloid leukemia-1 genes create fusion proteins that block terminal differentiation of hematopoietic cells by repressing transcription. These fusion proteins interact with nuclear hormone co-repressors, which recruit histone deacetylases to promoters to repress transcription. This finding suggests that proteins within the histone deacetylase complexes may be potential targets for pharmaceutical intervention in many leukemia patients. J. Cell. Biochem. Suppls. 30/31:194-202, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; regulatory element ; AML-3 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML-related proteins were identified in an osteoblast-specific promoter binding complex that functionally modulates bone-restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML-3 is the AML family member present in the osteoblast-specific complex. Antibody specific for AML-3 completely supershifts this complex, in contrast to antibodies with specificity for AML-1 or AML-2. AML-3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase-positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML-3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1-8, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; CBFa1 ; differentiation ; osteoblasts ; regulatory elements ; transforming growth factor-β ; receptor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Organization of the transforming growth factor-β (TGF-β) type I receptor (TRI) promoter predicts constitutive transcription, although its activity increases with differentiation status in cultured osteoblasts. Several sequences in the rat TRI promoter comprise cis-acting elements for CBFa (AML/PEBP2α) transcription factors. By gel mobility shift and immunological analyses, a principal osteoblast-derived nuclear factor that binds to these sites is CBFa1(AML-3/PEBP2αA). Rat CBFa1 levels parallel expression of the osteoblast phenotype and increase under conditions that promote mineralized bone nodule formation in vitro. Fusion of CBFa binding sequence from the TRI promoter to enhancer-free transfection vector increases reporter gene expression in cells that possess abundant CBFa1, and overexpression of CBFa increase the activity of transfected native TRI promoter/reporter plasmid. Consequently, phenotype-restricted use of cis-acting elements for CBFa transcription factors can contribute to the high levels of TRI that parallel osteoblast differentiation and to the potent effects of TGF-β on osteoblast function. J. Cell. Biochem. 69:353-363. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...