Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 96 (1992), S. 295-297 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 385-406 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The investigation of high-pressure autoignition of combustible mixtures is of importance in providing both practical information in the design of combustion systems and fundamental measurements to verify and develop chemical kinetic models. The autoignition characteristics of hydrogen-oxygen mixtures at low pressures have been explored extensively, whereas few measurements have been made at high pressures. The present measurements extend the range of pressures up to 4 MPa, where few measurements have yet been reported.Using a rapid compression machine equipped with a specially designed piston head, hydrogen autoignition pressure traces were measured at pressures above the second explosion limit (p=0.6-4 MPa, T=950-1050 K). The measured pressure records show a more gradual pressure increase during induction time in this regime than in the low-pressure regime, indicating that the energy release becomes significant at conditions over the second explosion limit.By comparing the measurements and a thermodynamic model which incorporates the heat transfer and energy release, a modified reaction rate constant for H2O2+H=HO2+H2, one of the most important reactions for hydrogen oxidation at high pressure, and the reaction with the largest uncertainty, is suggested in this work as k17=2.3 . 1013exp(-4000/T) cm3/mol-s. The modeled pressure history with the modified reaction rate agrees well with the measured values during the induction period over the range of conditions tested. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 385-406, 1998
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...