Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Key words: Cyanobacteria — Higher plants — Algae — Evolution — Phylogeny — Photoreceptors — Sensory/regulatory proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The evolutionary origin of the phytochromes of eukaryotes is controversial. Three cyanobacterial proteins have been described as ``phytochrome-like'' and have been suggested to be potential ancestors of these essential photoreceptors: Cph1 from Synechocystis PCC 6803, showing homology to phytochromes along its entire length and known to attach a chromophore; and PlpA from Synechocystis PCC 6803 and RcaE from Fremyella diplosiphon, both showing homology to phytochromes most strongly only in the C-terminal region and not known to bind a chromophore. We have reexamined the evolution of the photoreceptors using for PCR amplification a highly conserved region encoding the chromophore-binding domain in both Cph1 and phytochromes of plants and have identified genes for phytochrome-like proteins (PLP) in 11 very diverse cyanobacteria. The predicted gene products contain either a Cys, Arg, Ile, or Leu residue at the putative chromophore binding site. In 10 of the strains examined only a single gene was found, but in Calothrix PCC 7601 two genes (cphA and cphB) were identified. Phylogenetic analysis revealed that genes encoding PLP are homologues that share a common ancestor with the phytochromes of eukaryotes and diverged before the latter. In contrast, the putative sensory/regulatory proteins, including PlpA and RcaE, that lack a part of the chromophore lyase domain essential for chromophore attachment on the apophytochrome, are only distantly related to phytochromes. The Ppr protein of the anoxygenic photosynthetic bacterium Rhodospirillum centenum and the bacterial phytochrome-like proteins (BphP) of Deinococcus radiodurans and Pseudomonas aeruginosa fall within the cluster of cyanobacterial phytochromes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The plasmid content of 7 unicellular and 4 filamentous cyanobacterial strains has been analyzed. All strains were found to carry small plasmids while some strains harbor large plasmids up to approx. 400 kb. In addition, at least one megaplasmid of about 1000 kb was detected in the unicellular strain Synechococcus PCC7942. In the filamentous strain Calothrix PCC7601, 2 different distribution patterns of plasmids were observed in different subcultures, suggesting the presence of mobile DNA elements in this strain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract In the filamentous cyanobacterium Calothrix PCC 7504, which fixes N2 aerobically, the modification state of the regulatory PII protein (GlnB) was shown to depend on nitrogen and carbon availability, as observed in the unicellular non-fixing strain Synechococcus PCC 7942. However, the conditions for modifications, the time dependence of the process and the electrophoretic behavior of the native PII isoforms differed somewhat between the two strains. In another strain, Calothrix PCC 7601, which has lost the capability to fix N2, PII was modified only if ammonia plus an inhibitor of glutamine synthetase were present. It is proposed that: (i) the behavior of the PII proteins depends upon the physiological properties of the strains; and (ii) the modification system of PII per se may differ between the two cyanobacterial genera.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Cyanobacteria respond to changes in light or nutrient availability by modifications in their photosynthetic light harvesting antenna. In unicellular cyanobacteria a small polypeptide (NblA) is required for phycobilisome degradation following environmental stresses. In the filamentous strain Tolypothrix sp. PCC 7601 the nblAI gene, encoding a NblA homologue, is located upstream of the operon coding for phycoerythrin (cpeBA). The nblAI transcripts all originate from a single transcription start point; their intracellular levels vary according to nitrogen regimes but not with light spectral quality. Using recombinant His-tagged NblAI protein, we found that in vitro NblAI has affinity for both phycocyanin and phycoerythrin subunits from Tolypothrix sp. PCC 7601, but not for allophycocyanin from this cyanobacterium or for phycobiliproteins from other cyanobacterial species. We also observed that although nblAI is mainly expressed under nitrogen starvation, NblAI polypeptides are always present in the cell; a significant portion of them co-purify with phycobilisome preparations but only if cells were grown under red light. Our data indicate that NblAI attaches to the phycobilisomes even under non-inducing conditions and suggest a preferential affinity of NblAI for phycocyanin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 214 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The two ycf 27 genes from the filamentous cyanobacterium Tolypothrix PCC 7601 have been cloned and sequenced. These two genes, previously designated rpaA and rpaB, encode putative transcriptional regulators of the ‘OmpR’ family. In Synechocystis PCC 6803, homologous genes have been linked to the regulation of transfer of excitation energy from the phycobilisome to photosystem (PS) I and PSII respectively. Partial clones from Spirulina platensis, Dactylococcopsis salina and Synechococcus PCC 7002 have also been sequenced. A table of identity between the proteins confirms that RpaB belongs in the same family as the algal ycf 27 proteins. However, RpaA is a rather different protein and should lose the designation ycf 27. The loss of rpaB from the plastid genomes of eukaryotic algae is associated with the loss of phycobiliproteins, so it is likely that this gene performs a similar role in algae to that in cyanobacteria. The implications for chloroplast evolution are discussed along with the possible identity of the cognate histidine kinase gene in the plastid genomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 37 (1986), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The unicellular facultatively heterotrophic cyanobacterium Synechocystis 6803 harbors 4 plasmids, pSY1–4, of 2.5, 5.2, 50 and 100 kb, respectively. We observed that the loss of the pSY2 plasmid and that of cell motility occurs at a high frequency. However, we showed that there is no direct correlation between these two phenomena, and that cell motility does not require a pSY2-encoded function. In addition, restriction analysis and hybridization experiments showed that pSY1 and pSY2 share no homologous DNA sequences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 104 (1993), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Dating from the Pre-Cambrian era, cyanobacteria have a long history of adaptation to the Earth's environment. By evolving oxygen via photosynthetic reactions similar to those of plants and green algae, these prokaryotes were essential to the evolution of the present biosphere. They continue to make a large contribution to the equilibrium of the Earth's atmosphere by production oxygen and removing carbon dioxide. To survive in extreme or variable environments, cyanobacteria have developed specific regulatory systems, in addition to more general mechanisms equivalent to those of other prokaryotes or photosynthesis eukaryotes. Specific regulatory systems control the differentiation of specialized nitrogen-fixing cells and of cell types facilitating the dispersion of species. In the past decade, considerable progress has been made towards understanding the expression of the cyanobacterial genome in response to variations in the intensity and spectral quality of incident light and in response to nutritional conditions, especially carbon, nitrogen and sulphur sources. These studies have provided insights into the relationships between carbon and nitrogen intermediary metabolism, and a start towards understanding of the interconnected pathways which lead from the perception of environmental signals to the regulation of enzyme activities and gene expression. Cyanobacterial regulatory mechanisms share common features with those of other prokaryotes, but are unique since these essentially photo-autotrophic organisms must maintain a proper cellular C/N balance, in spite of dailty variations in incident light. Thus an appropriate coordination between photosynthesis and other metabolic processes must be achieved through control of the catalytic activity of key enzymes by reducing equivalents and ATP produced by photosynthetic or respiratory electron transport. Recently discovered kinases/phosphatases act by post-translational modification of specific proteins which probably act as signal transducers or modulators of gene expression in a manner similar to the well-known two-component regulatory systems described in other bacteria. In this overview, we present our current knowledge on the molecular aspects of the biology of cyanobacteria, as well as on their mechanisms of resistance to metal ions and their responses to metabolic stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We report here transcriptional analyses of a cyanobacterial gene encoding an aminoacyl-tRNA synthetase (aaRS), the gltX gene from Synechoccocus sp. PCC 7942, coding for the glutamyl-tRNA synthetase. We show that the transcript levels of gltX in Synechococcus depend on nitrogen availability and do not increase with the growth rate, which is at odds with observations from other bacteria. We also demonstrate the involvement of the cyanobacterial global regulator NtcA in transcriptional control of gltX according to nitrogen status. Our results support a regulatory model in which the gltX transcript level is finely tuned by a dynamic equilibrium between activation and repression relying upon the cellular concentration of NtcA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Cyanobacteria respond to environmental stress conditions by degrading their phycobilisomes, the light harvesting complexes for photosynthesis. The expression of nblA, a key gene in this process, is controlled by the response regulator NblR in Synechococcus sp. PCC 7942. Here we show that, under nitrogen stress, nblA is also regulated by NtcA, the global regulator for nitrogen control. NtcA activation of nblA was found to be nitrogen-specific and did not take place under sulphur stress. Transcripts from the two major transcription start points (tsp) for the nblA gene were induced in response to nitrogen and sulphur starvation. The most active one (tspII) required both NblR and NtcA to induce full nblA expression under nitrogen starvation. NblR and NtcA bound in vitro to a DNA fragment from the nblA promoter region, suggesting that, under nitrogen stress, both NblR and NtcA activate the main regulated promoter (PnblA-2) by direct DNA-binding. The structure of PnblA-2 differs from that of the canonical NtcA-activated promoter and it is therefore proposed to represent a novel type of NtcA-dependent promoter. We analysed expression patterns from ntcA and selected NtcA targets in NtcA–, NblR– and wild-type strains, and discuss data suggesting further interrelations between phycobilisome degradation and nitrogen assimilation regulatory pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the cyanobacterium Calothrix sp. PCC 7601 the cpc2 operon encoding phycocyanin 2 (PC2) is expressed if red radiations are available. RcaD was previously identified in extracts from red-light-grown cells as an alkaline phosphatase-sensitive protein that binds upstream of the transcription start point (TSP) of the cpc2 operon. In this work, RcaD was purified, and the corresponding gene cloned with a PCR probe obtained using degenerated primers based on RcaD peptide sequences (accession no. AJ319541). Purified RcaD binds to the cpc2 promoter region and also to those of the constitutive cpc1 and apc1 operons that encode phycocyanin 1 and allophycocyanin. Escherichia coli-overexpressed RcaD can bind to the cpc2 promoter region. The rcaD gene is upstream of an open reading frame (ORF) termed rcaG. Co-transcription of both genes was demonstrated by reverse transcription (RT)-PCR experiments, and found to be independent of the light wavelengths. A single TSP was mapped. Sequence features of RcaD and RcaG led us to propose a functional relationship between these two proteins. A rcaD mutant generated by allelic exchange exhibited altered expression of the cpc2, cpeBA, apc1 and cpc1 operons upon green to red-light shifts. RcaD seems to be a co-activator co-ordinating the transcription of the phycobiliprotein operons upon changes in light spectral quality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...