Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 869-888 
    ISSN: 0271-2091
    Keywords: k-∊ model ; Two-layer model ; Low-Reynolds number model ; Wall function method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The fully elliptic Reynolds-averaged Navier-Stokes equations have been used together with Lam and Bremhorst's low-Reynolds-number model, Chen and Patel's two-layer model and a two-point wall function method incorporated into the standard k-∊ model to predict channel flows and a backward-facig step flow. These flows enable the evaluation of the performance of different near-wall treatments in flows involving streamwise and normal pressure gradients, flows with separation and flows with non-equilibrium turbulence characteristics. Direct numerical simulation (DNS) of a channel flow with Re =3200 further provides the detailed budgets of each modelling term of the k and ∊-transport equations. Comparison of model results with DNS data to evaluate the performance of each modelling term is also made in the present study. It is concluded that the low-Reynolds-number model has wider applicability and performs better than the two-layer model and wall function approaches. Comparison with DNS data further shows that large discrepancies exist between the DNS budgets and the modelled production and destruction terms of the ∊ equation. However, for simple channel flow the discrepancies are similar in magnitude but opposite in sign, so they are cancelled by each other. This may explain why, even when employing such an inaccurately modelled ∊-equation, one can still predict satisfactorily some simple turbulent flows.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 223-235 
    ISSN: 0271-2091
    Keywords: turbulence model ; Reynolds stress model ; two-layer approach ; backward step flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper scrutinizes the predictive ability of the differential stress equation model in complex shear flows. Two backward-facing step flows with different expansion ratios are solved by the LRR turbulence model with an anisotropic dissipation model and the near-wall regions of the separated side resolved by a near-wall model. The computer code developed for solving the transport equations is based on the finite-volume-finite-difference method. In the numerical solution of the time-averaged momenum equations the Reynolds stresses are treated partially as a diffusion term and partially as a source term to avoid numerical instability. Computational results are compared with experimental data. It is found that the near-wall region of the separated side resolved by the near-wall model, the LRR model with a simple modification of an anisotropic dissipation model can predict backward step flows well.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 325-346 
    ISSN: 0271-2091
    Keywords: Taylor-Görtler-like vortices ; spiralling corner vortices ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: With the purpose of providing physical insight into the developing spanwise flow motion and identifying the presence of Taylor-Görtler- like vortices, we conducted a flow simulation in a rectangular cavity defined by a square cross-section and a spanwise aspect ratio of 3:1. The governing equations were solved for the transient processes by using a finite volume method in conjunction with segregated solution procedures. In the present work, attention is placed on the spiralling corner vortices near the two end walls and the longitudinal meandering Taylor-Görtler-like vortices. The investigated Reynolds number is taken to be 1500. As a vehicle for the present flow simulation, validation against analytic data was carried out first for a configuration similar to the problem of interest. This study demonstrates the feasibility of the employed computer code.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 1409-1420 
    ISSN: 0271-2091
    Keywords: vortex shedding ; shear flow ; Strouhal number ; square cylinder ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper is concerned with the numerical simulation of the flow structure around a square cylinder in a uniform shear flow. The calculations were conducted by solving the unsteady 2D Navier-Stokes equations with a finite difference method. The effect of the shear parameter K of the approaching flow on the vortex-shedding Strouhal number and the force coefficients acting on the square cylinder is investigated in the range K=0·0-0·25 at various Reynolds numbers from 500 to 1500. The computational results are compared with some existing experimental data and previous studies. The effect of shear rate on the Strouhal number and the force acting on the cylinder has a tendency to reduce the oscillation. The Strouhal number, mean drag and amplitude of the fluctuating force tend to decrease as the shear rate increases, but show no significant change at low shear rate. Increasing the Reynolds number decreases the Strouhal number and increases the force acting on the cylinder. At high shear rate the shedding frequencies of the fluctuating drag and lift coefficients are identical. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 557-579 
    ISSN: 0271-2091
    Keywords: lid-driven cavity ; Taylor-Görtler-like vortices ; instabilities ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper we apply a finite volume method, together with a cost-effective segregated solution algorithm, to solve for the primitive velocities and pressure in a set of incompressible Navier-Stokes equations. The well-categorized workshop problem of lid-driven cavity flow is chosen for this exercise, and results focus on the Reynolds number. Solutions are given for a depth-to-width aspect ration of 1:1 and a span-to width aspect ratio of 3:1. Upon increasing the Reynolds number, the flows in the cavity of interest were found to comprise a transition from a strongly two-dimensional character to a truly three-dimensional flow and, subsequently, a bifurcation from a stationary flow pattern to a periodically oscillatory state. Finally, viscous (Tollmien-Schlichting) travelling wave instability further induced longitudinal vortices, which are essentially identical to Taylor-Görtler vortices. The objective of this study was to extend our understanding of the time evolution of a recirculatory flow pattern against the Reynolds number. The main goal was to distinguish the critical Reynolds number at which the presence of a spanwise velocity makes the flow pattern become three-dimensional. Secondly, we intended to learn how and at what Reynolds number the onset of instability is generated. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...