Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 5 (1989), S. 283-292 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A numerical analysis based on the compressible Reynolds-averaged Navier-Stokes equation has been developed for the analysis of two-dimensional compressible turbulent flows in a turbine stage (nozzle and bucket). In the present flow analysis, governing equations are solved by the use of a time dependent explicit method and a two-equation model of turbulence is employed to estimate turbulence effects. To calculate nozzle and bucket flow fields simultaneously, a steady interaction between these flows is assumed. For spatial discretization of the governing equations, a control volume method combined with a body-fitted curvilinear coordinate system is developed to calculate the flows in arbitrarily shaped cascades. In order to assure the effectiveness of the present method, computations are carried out for a two-dimensional section at a blade midspan in a turbine stage. The method gives satisfactory results about boundary layers on blade surfaces, nozzle wake profiles and pitchwise averaged turbine design parameters at each blade exit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1341-1352 
    ISSN: 0271-2091
    Keywords: parallel ; overlapping ; FEM/FDM ; Navier-Stokes ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A 3D parallel overlapping scheme for viscous incompressible flow problems is presented that combines the finite element method, which is best suited for analysing flow in any arbitrarily shaped flow geometry, with the finite difference method, which is advantageous in terms of both computing time and computer storage. A modified ABMAC method is used as the solution algorithm, to which a sophisticated time integration scheme proposed by the present authors has been applied. Parallelization is based on the domain decomposition method. The RGB (recursive graph bisection) algorithm is used for the decomposition of the FEM mesh and simple slice decomposition is used for the FDM mesh. Some estimates of the parallel performance of FEM, FDM and overlapping computations are presented. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 6 (1973), S. 179-189 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Numerical analysis of fluid flow over a spillway is treated in the present paper. A variational principle is introduced for a flow with a free surface boundary under gravity, where the stream function and the profile of the free boundary are independent quantities subjected to variation. A new iteration method is formulated by the combined use of the variational principle and the finite element method. A numerical example based on the iterative method is illustrated. Results thus obtained show good agreement with those obtained from an empirical formula.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 103-113 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new finite element technique for two-dimensional viscous incompressible fluid flow problems is presented in this paper. The vorticity transport equation is integrated in a small control volume, which results in the conservation law of vorticity. The finite element technique is applied to this equation together with the continuity equation, where simple linear triangular elements with three nodes are used for the formulation. Resulting sets of algebraic equations are solved by the use of a kind of relaxation method. Numerical results for viscous flow past a cavity show good agreement with experimental results.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...