Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 411 (2001), S. 1016-1016 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Localized perturbation of processes that take place inside the living cell depends on molecular and spatial discrimination on a micrometre scale. Here we report the use of multiple laminar streams in a microfluidic channel to deliver membrane-permeable molecules to selected subcellular ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs),. In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biomedical Engineering 3 (2001), S. 335-373 
    ISSN: 1523-9829
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Technology , Medicine
    Notes: Abstract Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (〉=50 mum), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During routine culturing of capillary endothelial cells we found a fungal contamination that produced a local gradient of endothelial cell rounding (Fig. 1). Cells that were only a few cell diameters away were normally spread, suggesting that the fungus was specifically inducing cell rounding ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 339 (1989), S. 58-61 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The insulin-producing /3- cells are localized in approximately 400 focal endocrine islets embedded in the exocrine pancreas (Fig. la(i)). The neoplastic transformation of these cells has been accomplished through the use of a hybrid oncogene (RIP-Tag) that employs the rat insulin gene regulatory ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 716-723 
    ISSN: 0006-3592
    Keywords: prevascularization ; cell transplantation ; biodegradable polymers ; organ regeneration ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Highly porous biocompatible and biodegradable polymers in the form of cylindrical disks of 13.5 mm diameter were implanted in the mesentery of male syngeneic Fischer rats for a period of 35 days to study the dynamics of tissue ingrowth and the extent of tissue vascularity, and to explore their potential use as substrates for cell transplantation. The advancing fibrovascular tissue was characterized from histological sections of harvested devices by image analysis techniques. The rate of tissue ingrowth increased as the porosity and/or the pore size of the implanted devices increased. The time required for the tissue to fill the device depended on the polymer crystallinity and was smaller for amorphous polymers. The vascularity of the advancing tissue was consistent with time and independent of the biomaterial composition and morphology. Poly(L-lactic acid) (PLLA) devices of 5 mm thickness, 24.5% crystallinity, 83% porosity, and 166 μm median pore diameter were filled by tissue after 25 days. However, the void volume of prevascularized devices (4%) was minimal and not practical for cell transplantation. In contrast, for amporphous PLLA devices of the same dimensions, and the similar porosity of 87% and median pore diameter of 179 μm, the tissue did not fill completely prevascularized devices, and an appreciable percentage (21%) of device volume was still available for cell engraftment after 25 days of implantation. These studies demonstrate the feasibility of creating vascularized templates of amorphous biodegradable polymers for the transplantation of isolated or encapsulated cell populations to regenerate metabolic organs and tissues. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 236-241 
    ISSN: 0730-2312
    Keywords: fibronectin ; integrins ; signal transduction ; growth factors ; angiogenic factors ; capillary differentiation ; mechanical tension ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 232-237 
    ISSN: 0730-2312
    Keywords: cytoskeleton, mechanotransduction, integrins, cell architecture, tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future. J. Cell. Biochem. Suppls. 30/31:232-237, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 114-130 
    ISSN: 0730-2312
    Keywords: chromatin ; histone ; mitosis ; nuclear matrix ; nucleolus ; micromanipulation ; tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Chromatin is thought to be structurally discontinuous because it is packaged into morphologically distinct chromosomes that appear physically isolated from one another in metaphase preparations used for cytogenetic studies. However, analysis of chromosome positioning and movement suggest that different chromosomes often behave as if they were physically connected in interphase as well as mitosis. To address this paradox directly, we used a microsurgical technique to physically remove nucleoplasm or chromosomes from living cells under isotonic conditions. Using this approach, we found that pulling a single nucleolus or chromosome out from interphase or mitotic cells resulted in sequential removal of the remaining nucleoli and chromosomes, interconnected by a continuous elastic thread. Enzymatic treatments of interphase nucleoplasm and chromosome chains held under tension revealed that mechanical continuity within the chromatin was mediated by elements sensitive to DNase or micrococcal nuclease, but not RNases, formamide at high temperature, or proteases. In contrast, mechanical coupling between mitotic chromosomes and the surrounding cytoplasm appeared to be mediated by gelsolin-sensitive microfilaments. Furthermore, when ion concentations were raised and lowered, both the chromosomes and the interconnecting strands underwent multiple rounds of decondensation and recondensation. As a result of these dynamic structural alterations, the mitotic chains also became sensitive to disruption by restriction enzymes. Ion-induced chromosome decondensation could be blocked by treatment with DNA binding dyes, agents that reduce protein disulfide linkages within nuclear matrix, or an antibody directed against histones. Fully decondensed chromatin strands also could be induced to recondense into chromosomes with pre-existing size, shape, number, and position by adding anti-histone antibodies. Conversely, removal of histones by proteolysis or heparin treatment produced chromosome decondensation which could be reversed by addition of histone H1, but not histones H2b or H3. These data suggest that DNA, its associated protein scaffolds, and surrounding cytoskeletal networks function as a structurally-unified system. Mechanical coupling within the nucleoplasm may coordinate dynamic alterations in chromatin structure, guide chromosome movement, and ensure fidelity of mitosis. J. Cell. Biochem. 65:114-130. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...