Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 17 (1969), S. 165-170 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 22 (1983), S. 1068-1072 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 5 (1966), S. 1149-1154 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 20 (1972), S. 1195-1198 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Planta 92 (1970), S. 285-291 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Published methods for isolation of 3-indoleacetic acid (IAA) were found to give low yields due to losses at specific steps. Loss during extraction was minimized by grinding tissue under a nitrogen atmosphere, using 0.02% sodium diethyldithiocarbamate in 80% ethanol as the extractant. When ethereal solutions of IAA were concentrated in vacuo, the hormone was lost, presumably by sublimation. This significant source of loss was eliminated by concentration at atmospheric pressure. Oxidative losses during application of extracts to chromatograms were reduced by prior application of an antioxidant to the origin of chromatograms. These precautions permitted development of a method where 10–50 μg of IAA could be recovered from soybean leaves with approximately 60% yield.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Planta 127 (1975), S. 133-147 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The patterns of nitrate uptake, nitrate reductase activity in the leaves, and nitrogen fixation by the nodules were investigated in field-grown soybeans (Glycine max (L.) Merr.) over the growing season. The level of nitrate-reductase activity generally paralleled the concentration of nitrate in the leaf tissue over the entire growing season. A precipitous drop in both parameters was noted within 2–3 weeks after flowering. These parameters decreased by 80–95% at mid-pod fill, a stage where ovule (seed) development was in the logarithmic growth phase, placing a heavy demand on the plant for both energy and fixed nitrogen. The activity of nitrogen fixation of soybean root nodules bore a reciprocal relationship to that of nitrate reductase. The maximum levels of nitrogen fixation were reached at early pod fill when nitrate reductase activity had dropped to 25% of maximum activity. A rapid loss of nitrogen fixation activity occurred shortly after bean fill was initiated, again at a time when the ovules were developing at maximal rates. The total protein content of soybean leaves increased over the season to a maximum level at mid-pod fill. This was followed by a 50% drop over the next 3-week period when the plants approached senescence. This drop corresponded to that found for nitrogen fixation. A similar pattern was noted for watersoluble proteins in the leaf. These studies suggest that there is a close and competitive relationship between the processes of nitrate reduction and nitrogen fixation, with the latter process dominating as the major source of fixed nitrogen after the plants have flowered and initiated pods. At this transitional stage, both soil and environmental effects could cause pertrubation in these processes that could lead to a nitrogen stress causing flower and pod abscission. The rapid decay of nitrogen fixation at the time of midpod fill also suggests a competition between roots (nodules) and pods for available photosynthate. This competition appears to lead to the breakdown of foliar proteins and senescence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5028
    Keywords: Glutathione-S-transferase ; herbicide detoxification ; cDNA cloning ; safener induction ; maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Glutathione-S-transferases (GST's) in maize represent a family of enzymes which conjugate glutathione to several major classes of pre-emergent, selective herbicides. Chemicals termed safeners have been demonstrated to increase the tolerance of maize toward such herbicides when the maize seed has been previously treated with safeners. It has subsequently been shown that corresponding increases in glutathione-S-transferase species occur. To determine whether these compounds act at a transcriptional level we have used synthetic oligonucleotide probes to isolate cDNA clones encoding the major GST polypeptide subunit, designated GST A. The identity of the clones has been confirmed by hybrid-selected mRNA translation and immunoprecipitation using antibodies made against this GST species as well as by production of active GST in yeast cells transformed with an expression vector containing the cloned DNA. GST A has been found to be encoded in a mRNA of 1.1 kb. Sequencing of cDNA products obtained by primer extension of maize mRNA using our oligonucleotide probes is consistent with this mRNA corresponding to the isolated cDNA clone. Using the clone as a probe for Northern analysis we have found a three to four-fold increase in the steady state level of this mRNA in maize tissue grown from safener-treated seeds. The level of safener which gives this induction is comparable to that required to obtain herbicide tolerance in the field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...