Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Heat and mass transfer 26 (1991), S. 1-5 
    ISSN: 1432-1181
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Description / Table of Contents: Zusammenfassung Es wurde ein inverses Finite-Elemente-Computer-Programm entwickelt, um den Oberflächenwärmestrom und die Oberflächentemperatur aus dem mit Thermoelementen gemessenen Temperaturverlauf zu bestimmen. Die Bestimmung des konvektiven Wärmeübertragungskoeffizienten und der Verbrennungsgastemperatur ist mit Verwendung von Aufzeichnungen der transienten Ansprechtemperatur ausgeführt worden. Für die thermische Auslegung von Raketendüsen werden einige Beispiele dargestellt. Die Ergebnisse beweisen, daß dieses Verfahren bemerkenswerte Fähigkeiten besitzt, um unbekannte Randbedingungen annähernd zu berechnen.
    Notes: Abstract An inverse finite element computer code is developed to predict surface heat flux and surface temperature in conjunction with the measured thermocouple temperature history. Determination of convective heat-transfer coefficient and combustion gas temperature is carried out employing transient temperature response chart. Examples are illustrated which are typical of those that arise in thermal design of rocket nozzle. The results demonstrate that the method is remarkable in its ability to estimate unknown boundary conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Heat and mass transfer 22 (1988), S. 227-230 
    ISSN: 1432-1181
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Description / Table of Contents: Zusammenfassung Das Ziel der vorliegenden Arbeit ist die Erforschung des Einflusses der normalen und seitlichen Wärmeleitung auf die Temperaturverteilung und den Wärmeübergangskoeffizienten auf der Oberfläche einer typischen Überschallrakete. Dazu wird mit der Methode der Finiten Elemente eine zweidimensionale Wärmeleitungsgleichung mit einer zeitabhängigen Zufuhr von Reibungswärme durch die Luftströmung an einer Wand und Stahlungswärmeaustausch an der anderen Seite als Randbedingung gelöst.
    Notes: Abstract The main purpose of the present work is to investigate the influence of normal and lateral conduction on the temperature distribution and heat transfer coefficient on the surface of a typical sounding rocket. A two-dimensional heat conduction equation with a time dependent aerodynamic heating condition at one surface and a radiation boundary condition at the other end is solved using finite element method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Heat and mass transfer 31 (1996), S. 383-386 
    ISSN: 1432-1181
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Description / Table of Contents: Zusammenfassung Die Arbeit bezieht sich auf die numerische Simulation der physikalischen Phänomene in Wärmerohren, wobei insbesondere die Verdampfungsdynamik des Arbeitsmediums in einer Zweiphasen-Analyse untersucht wird. Mit Hilfe eines zeitabhängigen Differenzenverfahrens lassen sich die, die Wechselwirkung zwischen Dampfphase und Wasserpartikeln beschreibenden Gleichungen für den kompressiblen Fall lösen. Mittels eines dreistufigen Runge/Kutta-Verfahrens wird die Dampfdynamik analysiert, wobei durch Einführung eines Dämpfungsterms eine Stabilisierung des numerischen Verfahrens bewirkt wird. Ein praktisches Berechnungsbeispiel schließt die Untersuchung ab.
    Notes: Abstract This paper presents numerical simulation of the physical phenomena in heat pipe. The vapour dynamics of working fluid is considered in the numerical analysis of the heat pipe. A two-phase analysis is carried out for the heat pipe. The compressible flow equations for vapour-phase interaction with water particle phase are solved by a finite volume technique. A three stage Runge-Kutta time-stepping method is employed to solve vapour dynamics. Damping term is added to stablize the numerical scheme. An example is worked out to study the two phase flow in the heat pipe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Heat and mass transfer 31 (1996), S. 383-386 
    ISSN: 1432-1181
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Description / Table of Contents: Zusammenfassung  Die Arbeit bezieht sich auf die numerische Simulation der physikalischen Phänomene in Wärmerohren, wobei insbesondere die Verdampfungsdynamik des Arbeitsmediums in einer Zweiphasen–Analyse untersucht wird. Mit Hilfe eines zeitabhängigen Differenzenverfahrens lassen sich die, die Wechselwirkung zwischen Dampfphase und Wasserpartikeln beschreibenden Gleichungen für den kompressiblen Fall lösen. Mittels eines dreistufigen Runge/Kutta–Verfahrens wird die Dampfdynamik analysiert, wobei durch Einführung eines Dämpfungsterms eine Stabilisierung des numerischen Verfahrens bewirkt wird. Ein praktisches Berechnungsbeispiel schlie-t die Untersuchung ab.
    Notes: Abstract  This paper presents numerical simulation of the physical phenomena in heat pipe. The vapour dynamics of working fluid is considered in the numerical analysis of the heat pipe. A two-phase analysis is carried out for the heat pipe. The compressible flow equations for vapour-phase interaction with water particle phase are solved by a finite volume technique. A three stage Runge–Kutta time-stepping method is employed to solve vapour dynamics. Damping term is added to stablize the numerical scheme. An example is worked out to study the two phase flow in the heat pipe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 501-517 
    ISSN: 0271-2091
    Keywords: Multiphase ; turbulent ; finite volumes ; structured grids ; compressible flows ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerically fast algorithm has been developed to solve the viscous two-phase flow in an axisymmetric rocket nozzle. A Eulerian-Eulerian approach is employed in the computation to couple the gas-particle flow. Turbulence closure is achieved using a Baldwin-Lomax model. The numerical procedure employs a multistage time-stepping Runge-Kutta scheme in conjunction with a finite volume method and is made computationally fast for the axisymmetric nozzle. The present numerical scheme is applied to compute the flow field inside JPL and AGARD nozzles. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 481-489 
    ISSN: 0271-2091
    Keywords: Shock/turbulent problem ; Runge-Kutta time scheme ; FEM ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite element algorithm for solving the Navier-Stokes equations is presented for the analysis of high-speed viscous flows. The algorithm uses triangular elements. The unsteady equations are integrated to steady state with a Runge-Kutta time-marching scheme. A postprocessing artificial dissipation term is introduced to stabilize the computations and to dampen dissipation errors. Numerical results are compared with the calculation of uniform flow on a rectangular region which encounters an embedded oblique shock. A shock/turbulent boundary layer problem is also solved and results are compared with experimental data. It is shown that the postprocessing smoothing term and boundary conditions similar to the finite difference method work well in the present numerical studies.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 3 (1987), S. 167-172 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A numerical solution of the nonlinear inverse heat conduction problem is obtained using an in-line method in conjuction with the measured thermocouple temperature history. The deforming finite elements technique is used to treat initial time delay in temperature response due to thermocouple location. In the absence of elements deformation, the method reduces to the conventional Galerkin formulation. A three-time level implicit scheme, which is unconditionally stable and convergent, is employed for the numerical solution. The temperature-dependent thermophysical properties in the resulting matrices are evaluated at the intermediate level. The complication of solving a set of nonlinear algebraic equations at each step is avoided. Illustration of the technique is made on the one-dimensional problem with a thermal radiation boundary condition. The results demonstrate that the method is remarkable in its stability to predict surface condition without debilitation.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...