Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Key words Compulsion ; Addiction ; Cocaine ; Amphetamine ; Cannabis ; Phencyclidine ; Nucleus accumbens ; Amygdala ; Frontal cortex ; Limbic ; Stimulus-reward association ; Conditioned reward ; Sensitization ; Drug-seeking ; Inhibitory control ; Cognition ; Conditioned stimulus ; Incentive motivational ; Dopamine ; Rat ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Drug abuse and dependence define behavioral states involving increased allocation of behavior towards drug seeking and taking at the expense of more appropriate behavioral patterns. As such, addiction can be viewed as increased control of behavior by the desired drug (due to its unconditioned, rewarding properties). It is also clear that drug-associated (conditioned) stimuli acquire heightened abilities to control behaviors. These phenomena have been linked with dopamine function within the ventral striatum and amygdala and have been described specifically in terms of motivational and incentive learning processes. New data are emerging that suggest that regions of the frontal cortex involved in inhibitory response control are directly affected by long-term exposure to drugs of abuse. The result of chronic drug use may be frontal cortical cognitive dysfunction, resulting in an inability to inhibit inappropriate unconditioned or conditioned responses elicited by drugs, by related stimuli or by internal drive states. Drug-seeking behavior may thus be due to two related phenomena: (1) augmented incentive motivational qualities of the drug and associated stimuli (due to limbic/amygdalar dysfunction) and (2) impaired inhibitory control (due to frontal cortical dysfunction). In this review, we consider the neuro-anatomical and neurochemical substrates subserving inhibitory control and motivational processes in the rodent and primate brain and their putative impact on drug seeking. The evidence for cognitive impulsivity in drug abuse associated with dysfunction of the frontostriatal system will be discussed, and an integrative hypothesis for compulsive reward-seeking in drug abuse will be presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: Key words Prefrontal cortex ; Psychotomimetic ; Memory ; Dopamine ; Primate ; D4 receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract D4 dopamine receptors (DRs) are enriched in the primate prefrontal cortex, a brain region implicated in cognitive processes, and mesoprefrontal dopaminergic systems appear to be involved in modulating some cognitive functions of the prefrontal cortex. Despite anatomical localization of D4 DRs within the frontal cortex, the role of these receptors, specifically, in the regulation of cognition or behavior in primates is unknown. In these studies, we sought to learn whether specific antagonism of D4 DRs would affect performance of a task dependent on the frontostriatal system. The effects of NGD94-1 (2-phenyl-4(5)-[4-(2-pyrimidinyl)-piperazin-1-yl)-methyl]-imidazole dimaleate), a potent and selective D4 DR antagonist and haloperidol, a non-specific D2-like DR antagonist, on the performance of an object retrieval/detour task by monkeys were examined. The effects of these antagonists on the object retrieval task were evaluated in normal control monkeys and in subjects repeatedly exposed to phencyclidine (PCP), to induce frontal cortical dopaminergic and cognitive dysfunction. NGD94-1 (1–5 mg/kg) reversed the cognitive deficits of PCP pre-treated monkeys, whereas haloperidol (25 μg/kg) exacerbated PCP-induced performance impairments. A low dose of NGD94-1 failed to affect performance of control subjects, while both haloperidol and a high dose of NGD94-1 impaired control performance. These data show, for the first time, that D4 DRs modulate the cognitive functions of the frontostriatal system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...