Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Anaesthesia 57 (2002), S. 0 
    ISSN: 1365-2044
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary In a prospective, double-blind, randomised, placebo-controlled trial, we have compared the effects of midazolam co-induction with propofol predosing on the induction dose requirements of propofol in elderly patients. We enrolled 60 patients aged 〉 70 years, attending for urological surgery. The patients were allocated randomly to one of three groups, to receive either midazolam 0.02 mg.kg−1, propofol 0.25 mg.kg−1, or normal saline 2 ml (placebo) 2 min prior to induction of anaesthesia using propofol 1% infusion at 300 ml.h−1. The propofol dose requirements for induction were recorded for two end-points (loss of verbal contact and insertion of an oropharyngeal airway). Cardiovascular parameters were recorded at 1-min intervals for each patient until induction was complete. The midazolam group showed a significant reduction in propofol dose requirements for induction (p = 0.05) compared to the placebo group. The propofol group did not show a significant dose reduction compared to placebo. There were no demonstrable differences in terms of improved cardiovascular stability between groups. We conclude that propofol predosing does not significantly reduce the induction dose of propofol required in the elderly, and there were no cardiovascular benefits to either midazolam co-induction or propofol predosing in the elderly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2044
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary A postal survey was sent to all anaesthetic departments in the UK to identify current practice and gain insight into anaesthetists' attitudes regarding the use of anaesthetic rooms for induction of general anaesthesia. Replies were received from 247 (88%) departments. Of these, 10 (4%) departments routinely anaesthetise all patients in theatre. The main reason for change was patient safety. Of those who routinely use the anaesthetic room for induction of anaesthesia, only 5% have made provision to change to in-theatre induction. An estimated £30 million has been spent on equipping anaesthetic rooms since 1994; with the result that 91% of departments where anaesthetic room induction occurs, now have monitoring that complies with the current Association of Anaesthetists of Great Britain and Ireland guidelines. The majority of the respondents who use anaesthetic rooms perceived induction in theatre to result in reduced efficiency, increased patient anxiety, a worse teaching environment and no improvement in patient safety. This was in contrast to the attitudes of respondents from hospitals where in-theatre induction occurs. Only 9.7% of all respondents believed that clinical governance would necessitate a change to anaesthetizing all patients in theatre compared to 25% who believed that the increasing costs of monitoring equipment would lead to a change. Overall 79% of respondents prefer to use the anaesthetic room, 16% prefer in-theatre induction and 5% expressed no preference. However, of those who routinely anaesthetise in theatre, 70% thought it to be preferable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2044
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary Whilst conducting a randomised controlled trial into the effects of combination anti-emetics, we endeavoured to confirm that our patient groups were matched using the predictive scoring systems for postoperative nausea and vomiting (PONV) and postoperative vomiting (POV) reported in the literature. One hundred and seventy-seven female patients attending for day case gynaecological surgery were studied and their individual risks of PONV and POV were calculated using four predictive models for PONV and two predictive models for POV. The scoring systems were then evaluated to see if agreement existed between them using the method described by Bland and Altman. Bias and 95% limits of agreement were calculated for each combination. Agreement between scoring systems was poor. As the scoring systems gave widely divergent predictions, we concluded that the predictive risk for PONV or POV would be dependent upon the scoring system chosen, thus limiting their usefulness in this role.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 35 (2000), S. 5179-5186 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A series of carefully selected monodisperse nylon 6 oligomers, terminated with short alkane segments, have been crystallised from solution. This contribution contains an overview of the folding and structures in nylon oligomer crystals, recorded at room temperature, using transmission electron microscopy and X-ray diffraction (both wide- and small-angle); together with important conclusions drawn from studies of these molecules. The work is set in the context of much earlier studies by Professors Zahn and Keller and their co-workers. The oligomers contained 2, 3, 5, 9, 10 and 17 amide units, with a length range of 2 nm to 15 nm. The shorter oligomers (with 2, 3 and 5 amide units) crystallised with non-folded chains; the longer 9- and 10-amide oligomers were once-folded, following rapid crystallisation; whilst the 17-amide oligomer was found to fold twice. Thus chain folding sets in on rapid crystallisation, with the 9-amide molecule (length ∼8 nm). Studies of the once folded 9- and 10-amide oligomers show that both amide unit and alkane segment folds occur, in this instant the symmetry of the hairpin and the requirement for saturated hydrogen bonds between straight stems are the controlling factors; the nature of the fold is subservient. This shows that nylon 6 chains can stereochemically accommodate either alkane or amide folds. All the folded molecules were observed in the nylon 6 α-structure, where chains are antiparallel within the hydrogen-bonded sheets, which have alternating chain (c)-axis shear alternately. In the shorter oligoamides (2-, 3- and 5-amide), where the molecules do not fold, the crystallisation is less restricted (e.g. the chains can form a parallel array) and two new crystal structures have been identified. In the 2- and 3-amide crystals, hydrogen bonds can occur in two directions between parallel chains and orthogonal to the molecular axis (c-axis), which is inclined at a substantial angle to the lamellar surface (the κ-structure). The 5-amide oligomer also does not fold. In this case, the hydrogen bonds are made between antiparallel chains, as in the nylon 6 α-structure; however, these sheets progressively c-axis shear to give a new structure (the λ-structure). Chain-folded molecules can crystallise in the λ-structure although not in the κ-structure because it requires parallel chains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1153-1165 
    ISSN: 0887-6266
    Keywords: even-odd nylons ; lamellar crystals ; structure ; hydrogen-bonding schemes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nylon 6 9 has been shown to have structures with interchain hydrogen bonds in both two and in three directions. Chain-folded lamellar crystals were studied using transmission electron microscopy and sedimented crystal mats and uniaxially oriented fibers studied by X-ray diffraction. The principal room-temperature structure shows the two characteristic (interchain) diffraction signals at spacings of 0.43 and 0.38 nm, typical of α-phase nylons; however, nylon 6 9 is unable to form the α-phase hydrogen-bonded sheets without serious distortion of the all-trans polymeric backbone. Our structure has c and c* noncoincident and two directions of hydrogen bonding. Optimum hydrogen bonding can only occur if consecutive pairs of amide units alternate between two crystallographic planes. The salient features of our model offer a possible universal solution for the crystalline state of all odd-even nylons. The nylon 6 9 room-temperature structure has a C-centered monoclinic unit cell (β = 108°) with the hydrogen bonds along the C-face diagonals; this structure bears a similarity to that recently proposed for nylons 6 5 and X3. On heating nylon 6 9 lamellar crystals and fibers, the two characteristic diffraction signals converge and meet at 0.42 nm at the Brill temperature, TB · TB for nylon 6 9 lamellar crystals is slightly below the melting point (Tm), whereas TB for nylon 6 9 fibers is ≅ 100°C below Tm. Above TB, nylon 6 9 has a hexagonal unit cell; the alkane segments exist in a mobile phase and equivalent hydrogen bonds populate the three principal (hexagonal) directions. A structure with perturbed hexagonal symmetry, which bears a resemblance to the reported γ-phase for nylons, can be obtained by quenching from the crystalline growth phase (above TB) to room temperature. We propose that this structure is a “quenched-in” perturbed form of the nylon 6 9 high-temperature hexagonal phase and has interchain hydrogen bonds in all three principal crystallographic directions. In this respect it differs importantly from the γ-phase models. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1153-1165, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2401-2412 
    ISSN: 0887-6266
    Keywords: nylon 2 4 ; chain folding ; lamellar crystals ; structure and morphology ; crystallization ; electron microscopy ; Brill transformation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Chain-folded lamellar crystals of nylon 2 4 have been prepared from dilute solution by addition of poor solvent. Two crystal structures are observed at room temperature: a monoclinic form I, precipitated at elevated temperature, and a less-defined, orthorhombic form II, precipitated at room temperature. The unit cell parameters for both forms are similar to those reported for its isomer, nylon 3. Nylon 2 4 form II is a liquid-crystal-like or disordered phase, consisting of hydrogen-bonded sheets in poor register in the hydrogen bond direction. Form I crystals have two characteristic interchain spacings of 0.41 nm and 0.39 nm at room temperature and on heating, exhibit a structural transformation and a Brill temperature (250°C) characteristic of many other even-even nylons. Nylon 2 4 is a member of the nylon 2 Y and nylon 2N 2(N+1) families, and the form I crystals show behavior commensurate with both. We propose they contain a proportion of intersheet hydrogen bonds at room temperature, similar to that for the nylon 2 Y family, and the short dimethylene alkane segments mean that the structure consists of hydrogen-bonded a-sheets, with an amide unit in each fold, similar to that of nylon 4 6. The fold geometry and sheet structure is compared with chain-folded apβ-sheet polypeptides and nylon 3. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2401-2412, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 675-688 
    ISSN: 0887-6266
    Keywords: nylons ; lamellar crystals ; diffraction ; Brill transition temperatures ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Four members of the even-even nylon 2 Y series, for Y = 6, 8, 10, and 12, have been crystallized in the form of chain-folded lamellar single crystals from 1,4-butanediol and studied by transmission electron microscopy (imaging and diffraction), x-ray diffraction, and thermal analysis. The structures of these 2 Y nylons are different from those of nylon 6 6 and many other even-even nylons. At room temperature, two strong diffraction signals are observed at spacings 0.42 and 0.39 nm, respectively; these values differ from the 0.44 and 0.37 nm diffraction signals observed for nylon 6 6 and most even-even nylons at ambient temperature. Detailed analyses of the diffraction patterns show that all these 2 Y nylons have triclinic unit cells. The diamine alkane segments of 2 Y nylons are too short to sustain chain folds; thus, the chain folds must be in the diacid alkane segments in all cases. On heating the crystals from room temperature to the melt, the triclinic structures transform into pseudohexagonal structures and the two diffraction signals meet at the Brill transition temperature which occurs significantly below the melting point. The room temperature structures of these 2 Y nylons are similar to the unit cell of nylon 6 6 at elevated temperature, but below its Brill temperature. The room temperature structures and behavior on heating of the nylon 2 Y family is noticeably different from that of the even-even nylon X 4 family, although the only difference between these families of polyamides is the relative disposition of the amide groups within the chains. The results show that in order to understand the structure, behavior and properties of crystalline nylons, especially as a function of temperature, the detailed stereochemistry needs to be taken into account. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 675-688, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...