Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A lysosomal pepstatin-insensitive proteinase (CLN2p) deficiency is the underlying defect in the classical late-infantile neuronal ceroid lipofuscinosis (LINCL, CLN2). The natural substrates for CLN2p and the causative factors for the neurodegeneration in this disorder are still not understood. We have now purified the CLN2p from bovine brain to apparent homogeneity. The proteinase has a molecular mass of 46 kDa and an aminoterminal sequence, L-H-L-G-V-T-P-S-V-I-R-K, that is identical to the human enzyme. Peptide:N-glycosidase F and endoglycosidase H treatment of the CLN2p reduced its molecular mass to 39.5 and 40.5 kDa, respectively, suggesting the presence of as many as five N-glycosylated residues. The CLN2p activity was not affected by common protease inhibitors, and thiol reagents, metal chelators, and divalent metal ions had no significant effect on the proteolytic activity of the CLN2p. Among the naturally occurring neuropeptides, angiotensin II, substance P, and β-amyloid were substrates for the CLN2p, whereas angiotensin I, Leu-enkephalin, and γ-endorphin were not. Peptide cleavage sites indicated that the CLN2p is a tripeptidyl peptidase that cleaves peptides having free amino-termini. Synthetic amino- and carboxyl-terminal peptides from the subunit c sequence, which is the major storage material in LINCL, are hydrolyzed by the CLN2p, suggesting that the subunit c may be one of the natural substrates for this proteinase and its accumulation in LINCL is the direct result of the proteinase deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6903
    Keywords: β-N-Oxalyl-L-α,β-diaminopropionic acid (ODAP) ; excitotoxin ; neurotoxin ; Lathyrus sativus ; neurolathyrism ; glutamate receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Direct evidence for the excitotoxicity of β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), the Lathyrus sativus neurotoxin has been studied by examining the binding of chemically synthesized [2,3 3H]ODAP ([3H]ODAP) to synaptic membranes. [3H]ODAP binding to membranes was mostly nonspecific, with only a very low specific binding (15–20% of the total binding) and was also not saturable. The low specific binding of [3H]ODAP remained unaltered under a variety of assay conditions. A low Bmax of 3.2 ± 0.4 pmol/mg and Kd 0.2 ± 0.08 μM could be discerned for the high affinity interactions under conditions wherein more than 80–90% of the binding was nonspecific. While ODAP could inhibit the binding of [3H]glutamate to chick synaptic membranes with a Ki of 10 ± 0.9 μM, even L-DAP, a non neurotoxic amino acid was also equally effective in inhibiting the binding of [3H]glutamate. The very low specific binding of [3H]ODAP to synaptic membranes thus does not warrant considering its interactions at glutamate receptors as a significant event. The results thus suggest that the reported in vitro excitotoxic potential of ODAP may not reflect its true mechanism of neurotoxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6903
    Keywords: Excitotoxicity ; Lathyrism ; NMDA receptor ; strychnine-insensitive glycine receptor ; β-N-oxalyl-α,β-diaminopropanoic acid ; glutamate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Lathyrism is a non-progressive motor neuron disease produced by consumption of the excitatory amino acid, 3-N-oxalyl-L-2,3-diaminopropanoic acid (β-ODAP). To learn more about the mechanisms underlying Lathyrism three structural analogs of β-ODAP were synthesized. Carboxymethyl-α,β-diaminopropanoic acid (CMDAP) evoked inward currents which were antagonized by APV (30 μM), but not by CNQX (10 μM). N-acetyl-α,β-diaminopropanoic acid (ADAP) evoked no detectable ionic currents but potentiated N-methyl-D-aspartate (NMDA)-activated currents. The potentiation of NMDA currents by ADAP was blocked by 7-chlorokynurenic acid. Carboxymethylcysteine (CMC) did not activate any detectable ionic currents. None of the three β-ODAP analogs produced visible symptoms of toxicity in day old chicks when administered for 2–3 consecutive days. Ligand binding studies demonstrated that all the three compounds were effective to in displacing [3H]glutamate. The maximum inhibition was 92% for CMDAP, 61% for ADAP, 65% for CMC and 99% for β-ODAP. These data indicate that analogs of β-ODAP may interact with glutamate receptors without producing neurotoxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...